High Energy Systems for Transforming CO$_2$ to Valuable Products

Osman M. Akpolat, Howard Meyer

GTI (Gas Technology Institute)

Paul Thronson

PCT E-Beam Integration

NETL CO$_2$ Capture Technology Project Review Meeting, Pittsburgh, PA, August 26-30, 2019
Outline

• Project Overview
• Technology Background
• Technical Approach Discussion
• Progress and Current Status
• Plans for Future
Introduction to GTI

- Research organization, providing energy and environmental solutions to the government and industry since 1941
- Facilities: 18 acre campus near Chicago
Project Overview
High Energy Systems for Transforming CO$_2$ to Valuable Products

- **Sponsor**

- **Funding**: Federal: $799,997, Cost-share: $206,000, Total: $1,005,997
- **Duration**: 39 months
 - BP1: 5/1/2017 – 10/31/2019
 - BP2: 11/1/2019 – 7/31/2020
- **Objective**: Develop a direct electron beam synthesis (DEBS) process to produce valuable chemicals such as acetic acid, methanol, and carbon monoxide, using carbon dioxide captured from a coal-fired power plant and natural gas.
Project Objectives

• Develop the Direct E-Beam Synthesis (DEBS) process
 Use high-energy electron beams from an accelerator to break chemical bonds

• Produce valuable chemicals, such as acetic acid, methanol, and carbon monoxide, at relatively low severity (pressure near one atmosphere and temperatures <150°C)
 Utilize near-pure CO₂ captured from a pulverized coal (PC)-fired power plant and methane, imported as natural gas
High Energy Systems for Transforming CO2 to Valuable Products

Team:

<table>
<thead>
<tr>
<th>Member</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>gti®</td>
<td>• Overall project integration and management</td>
</tr>
<tr>
<td></td>
<td>• Design and construct E-Beam reactor and testing unit</td>
</tr>
<tr>
<td></td>
<td>• Conceptual design for coal-fired power plants with DEBS</td>
</tr>
<tr>
<td>PCT</td>
<td>• Provide guidance in E-Beam reactor design and E-Beam accelerator for testing</td>
</tr>
<tr>
<td></td>
<td>• Provide commercial size electron accelerator design and costing</td>
</tr>
<tr>
<td>ESF</td>
<td>• Develop kinetic model for the E-Beam reactor</td>
</tr>
</tbody>
</table>
Technology Background
DEBS Process for Post- and Pre-combustion
Electron Beam Fundamentals

200keV & 20mA E-Beam:
E-Beam power = 4000 watt (4000 J/sec)

Each electron will have:
3.2 x 10^{-14} J of energy

E-Beam will have:
1.25 x 10^{17} electrons per second

Bond dissociation energy (kJ/mol):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>337.2</td>
</tr>
<tr>
<td>C-O</td>
<td>1076.5</td>
</tr>
</tbody>
</table>

Each electron has the potential to break:
~60,000 C-H
~20,000 C-O
Comparison of Plasma Conversion Technologies

**Vinokurov et al., Chemistry & Technology of Fuels and Oils, V-41, #2, 2005
Advantages Over Traditional Processes

- The DEBS process uses **high-energy electron beams** to break chemical bonds, allowing production of the desired chemicals at **near-ambient pressure and temperatures**

- Valuable chemical production by DEBS technology applied to CO$_2$ captured from coal-fired power plant will provide:
 1. Low pressure / low temperature single reactor operation
 2. More energy-efficient CO$_2$ utilization
 3. Lower capital and operating costs
Challenges

• Technology Challenge:
 • Delivering maximum e-beam dose
 • Determining which products are more probable
 • Minimizing power use by E-Beam Accelerator
Experimental Design & Key Experimental Parameters

- E-Beam dose, (kJ/gm)
- Gas residence time (ms)
- E-Beam energy : 80-200 (keV), 20 (ma)
- Use of a promoter
- Use of catalyst(s) to promote desired reactions
Milestone Schedule

<table>
<thead>
<tr>
<th>Budget Period</th>
<th>Milestone Number</th>
<th>Title or Brief Task Description</th>
<th>Original Planned</th>
<th>Revised Planned</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1.1</td>
<td>Update Project Management Plan</td>
<td>4/30/17</td>
<td>6/1/17</td>
<td>6/27/17</td>
</tr>
<tr>
<td>1A</td>
<td>1.2</td>
<td>Kickoff Meeting</td>
<td>4/30/17</td>
<td>6/13/17</td>
<td>7/13/17</td>
</tr>
<tr>
<td>1B</td>
<td>2.1</td>
<td>Complete Final Design</td>
<td>5/1/17</td>
<td>8/1/19</td>
<td>8/1/19</td>
</tr>
<tr>
<td>1B</td>
<td>1.3</td>
<td>Submit Continuation Application</td>
<td>1/1/18</td>
<td>8/1/19</td>
<td>8/21/19</td>
</tr>
<tr>
<td>1B</td>
<td>7.1</td>
<td>Develop Preliminary Kinetic Model</td>
<td>12/31/17</td>
<td>10/31/19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.1</td>
<td>Start Parametric Testing</td>
<td>2/1/18</td>
<td>11/15/19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
<td>Determine key operating parameters that would Maximize per pass CO₂ Conversion</td>
<td>3/31/18</td>
<td>12/31/19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.1</td>
<td>Identify Operating Conditions and Catalyst Combinations for Chemical Production</td>
<td>7/31/18</td>
<td>12/31/19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.2</td>
<td>Develop Kinetic Model</td>
<td>2/28/19</td>
<td>7/31/20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.1</td>
<td>Report Analysis of Experimental Data</td>
<td>2/28/19</td>
<td>7/31/20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.2</td>
<td>Complete Economic Analysis</td>
<td>2/28/19</td>
<td>7/31/20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td>Submit Final Technical Report</td>
<td>4/1/19</td>
<td>8/31/20</td>
<td></td>
</tr>
</tbody>
</table>
Success Criteria

<table>
<thead>
<tr>
<th>Decision Point</th>
<th>Date</th>
<th>Success Criteria</th>
</tr>
</thead>
</table>
| Go / No-Go | 10/31/2019 | • Complete design and manufacture of testing skid with E-Beam reactor.
 | | • Successful commissioning of a viable reactor system and testing unit:
 | | Verify gas flow meter control by measuring the vent using a dry test meter
 | | Operate chiller for condenser to achieve less than -20°C in the condenser
 | | Verify detection limit of acetic acid and methane using RGA at 100ppmv
 | | • Identify at least two catalysts to control the recombination and increase the yields for more valuable products
 | | • Complete design and cost estimate for the modification to a commercial electron accelerator shield housing |
| Completion of the project | 7/31/2020 | • 85% acetic acid, 15% methanol and CO selectivity
 | | • Higher than 25% CO₂ conversion per pass
 | | • Development of kinetic model
 | | • Reduce the COE by at least 50% compared to DOE Case 12-B
 | | • Achieve no net GHG emissions in production of products |
Risk Status

Initial Risks:
1. Reactor size too small for practical use in testing unit
 1a. Reduce E-Beam power and increase reactor size
2. Recombination reactions occur too quickly
 2a. Decrease residence time in reactor
 2b. Include a “recombination chamber”
 2c. Change location of catalyst
3. Reactions produce unidentified products
 3a. Increase analytical diagnostic capability
 3b. Change catalyst

Resource Risk:
4. Accelerator provider not able to perform project
 4a. Reserved “beam time” for GTI’s experiments
 4b. Collaborate with other accelerator facilities
 4c. Operate accelerator at GTI

Resource Issue:
5. Accelerator provider not able to perform experiments
 5a. Identify other facilities with similar capability
 5b. Collaborate with other accelerator facilities
 5c. Working with PCT-Ebeam Integration
Progress and Current Status of Project
Electron Accelerator

- Electron accelerator provided by PCT E-Beam Integration
- Uses a seal lamp unit from COMET
- Custom made accelerator and reactor housing
COMET Sealed Lamp Accelerator

- 200 keV, 20 ma electron beam
- Beam window is 40mm x 400mm
Completed Accelerator Housing

- Construction and completed accelerator housing during Factory Acceptance Test at PCT E-Beam Integration.
GTI Facility Modification

• Remodeled a section of existing laboratory to accept electron accelerator.

• Upgraded ventilation to allow for high volume of combustible gas use.
Electron Accelerator Delivered to GTI
Plans for Future Testing
Plans for future testing/development

• Finish reactor and testing skid fabrication
• Begin testing at GTI with new reactor and accelerator
• Kinetic model verification
• Techno-economic analysis

• Scaling up accelerator and reactor is not expected to be an issue:
 1. Available beam coverage from existing equipment is large
 2. Multiple accelerators can be connected to increase beam coverage if necessary
Summary

• Objective is to develop a commercially viable non-equilibrium process that breaks bonds directly unlike conventional chemistry that requires heating the entire molecule

• Irradiation of CH₄ and CO₂ mixture has been modeled for over 200 compounds with over 1600 reactions

• E-Beam reactor designed and constructed

• Electron accelerator is delivered to GTI and being commissioned for parametric testing
Acknowledgements

• Financial Support

• DOE NETL
 Bruce Lani
 Andrew O’Palko
 Lynn Brickett
 José Figueroa
Disclaimer

This presentation was prepared by Gas Technology Institute (GTI) as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.