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• Gas turbines and combined-cycle plants are equipped with hundreds 
to thousands of sensors, which are used for monitor turbine 
performance or physical degradation. 

• Due to the large volume of data generated by these sensors, 
conventional data analytic tools are no longer effective.
– Large volumes of multivariate time series (correlated variables)

– Complex data structures (spectral data, image and video data)

• Big Data Analytics holds enormous potential for improving the 
reliable operation of power generating gas turbines and combined 
cycle plants. 
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Background and Motivation



• In the energy/power generation sector, multivariate time-series 
applications involve monitoring variables individually. 
– A normally distributed variable has a 0.27% chance of generating false alarm 

• On average a false alarm every 370 observations.
– This does not even consider harsh industrial settings 

• Equipment dynamics, signal noise, unaccounted sources of randomness, 
missing/corrupt data, etc.  

• Consider 50 variables monitored independently with 𝛼𝛼 = 0.27%
– False alarm rate of the monitoring system can be estimated using the 

expression 1 −∏𝑖𝑖=1
50 1 − 𝛼𝛼

• Approximately 13% for just 50 variables 
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Background and Motivation



• Another limitation relates to the dimensionality of the data.
– Algorithms used to date by OEMs and utility companies only process 

aggregated data.  
– For example, although acoustic/vibration spectral signatures are constantly 

acquired at the plant-level. However, OEM monitoring centers only receive 3 
to 4 values every 5 minutes (peak amplitudes at specific frequency ranges). 

• Data is prone to being very noisy and contains very little information.  

• Although inefficient, this approach has remained the de facto tool 
used at Monitoring and Diagnostics Centers operated by major 
OEM’s and utilities.  
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Background and Motivation



• Prognostic models are intended for predicting remaining useful 
lifetime (RUL). 
– Formally, given the current age and condition of an asset, RUL is defined as a 

(probabilistic) random variable

𝑃𝑃 𝑇𝑇𝑘𝑘 > 𝑡𝑡 ,𝑍𝑍 𝑡𝑡 , 𝑆𝑆1, … , 𝑆𝑆𝑘𝑘
– Where 𝑇𝑇 represents the RUL,  𝑡𝑡 some future time/age of the 

asset/component, 𝑆𝑆1, … , 𝑆𝑆𝑘𝑘 is observed degradation-based sensor data   
𝑍𝑍(𝑡𝑡) is the operating condition and/or profile.

• At their core, most of the existing techniques used to date are 
actually detection models (not predictive).  
– Once the detection model flags an anomaly (fault), predictions are generated 

based on SME experience and gut instincts.
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Background and Motivation



• Enable the development of a Big Data analytics framework for fault detection 
and prognostics of critical gas turbine components through a systematic 
experimental program that leverages unique industry-class turbine test rigs. 

• Advanced gas turbine test facilities will be interrogated using state-of-the-art 
instrumentation techniques to build an open data collection supporting 
predictive algorithm development for combustors and turbines.

• Highly-resolved data generated from a combustor test rig (Georgia Tech) and a 
turbine test rig (Penn State) during both normal operation and with “seeded” 
faults, will be used as the basis for the Big Data sets.  The test conditions in the 
two test facilities will include common, critical events that occur in the 
operation of power plants. 
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Project Objective



• The technical approach is based on 
– Experimental testing to gain knowledge of the physical processes 

associated with unsteady combustor and turbomachinery dynamics.
– Data-driven modeling and Machine Learning for development of 

analytics algorithms.
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Technical Approach



• Research Tasks:
– Project Management and Planning
– Combustion System Faults and Data. (Experimental)
– Turbine Faults and Data. (Experimental)
– Virtual Combustor and Turbine Probes. 
– Big Data Analytics for Gas Turbine Health Monitoring
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Technical Approach



The PSU Steady Thermal Aero Research Turbine (START) Lab 
addresses four primary research focuses

9

Study turbine performance 
with engine-relevant hardware

Test bed for instrumentation 
development

Advance the use of additive 
manufacturing in turbines

Direct integration of sensors 
in hardware
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(1) Inlet Temperature Transients (2) Blade Cooling Loss

(3) Inter-Stage Cooling Loss (4) Blade Tip Clearance

CO2 tracer gas quantifies 
sealing effectiveness

Courtesy of 
PrOXisense

Magnetic bearings enable shaft alignment 
offsets to simulate local clearance changes

Courtesy of Synchrony

Four turbine faults will be demonstrated for this project
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(1) An in-line natural gas heater simulates inlet temperature spikes

𝐓𝐓𝐢𝐢𝐢𝐢 𝐬𝐬𝐬𝐬𝐢𝐢𝐬𝐬𝐬𝐬𝐬𝐬 𝐥𝐥𝐬𝐬𝐥𝐥𝐥𝐥𝐥𝐥𝐢𝐢𝐬𝐬𝐢𝐢

∆𝐓𝐓𝐢𝐢𝐢𝐢

Time Time
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(2) Blade coolant loss detected by advanced measurement systems 

Spatially-resolved 
component views

Blade 
Cooling Flow

Hot Main Gas 
Flow

Supply

Thin-film heat flux gages

Temporally-resolved, thin-film heat flux 
gages mounted directly to blade surfaceAnthony et al. [2011]

Thermal Imaging

Coupling advanced measurement systems with simple 
turbine performance measurements can indicate the 
root cause of changes in turbine performance

These high fidelity datasets can be related back to 
simpler in service engine measurements 
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(3) Effects of inter-stage coolant transients have been identified

Hysteresis of measured cavity parameters 
caused by changing hardware temperature 

through transient event

Improved component lifing models 
including cavity flow physics changes

Steady measurements +
Transient measurements

Combined assessment 
of "slow" and "fast" 
coolant loss effects

Hot gas
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(4) Large- and small-scale tip clearance changes are demonstrated

Closed clearance

Open clearance

Large-scale change (overall) Small-scale change (local)

𝛕𝛕𝐬𝐬𝐨𝐨𝐬𝐬𝐢𝐢

𝛕𝛕𝐥𝐥𝐥𝐥𝐬𝐬𝐬𝐬𝐬𝐬𝐜𝐜



• Combustion system faults threaten 
entire hot section
– Damage initiates with 

combustor/transition piece.
– Liberated parts travel downstream 

and damage power turbine

• Common hardware faults:
– Combustor liner cracks
– Transition piece cracks
– Melted fuel/air swirlers
– These failures alter flow paths!
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Combustion Background: Hardware Faults

Goy et al., in Combustion instabilities in gas turbine engines: 
operational experience, fundamental mechanisms, and 

modeling, 
T. Lieuwen and V. Yang, Editors. 2005. p. 163-175.

Image courtesy of B. Igoe, Siemens



• In-engine instrumentation limited to basic 
point measurements
– Single-point pressures, temperatures
– Harsh conditions prevent instrumentation 

• Combustor test rigs enable over-
instrumentation
– Optical accessibility admits optical diagnostics
– Spatio-temporally resolved data 

• Faults associated with altered flow paths  
and fluid dynamics
– Directly detectable with over-instrumentation
– Learn fault fingerprints in single-point data
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Combustion Background: Instrumentation

https://www.omega.com

Over-instrumented blowout experiment in optically 
accessible combustion test rig at Georgia Tech



• Low NOx systems are particularly prone to lean blowout

• Lean blowout trips plant
– Plant offline for lengthy shutdown, 

purge, restart cycle

• Substantial body of research 
on lean blowout precursor 
detection
– Often detect precursors too late
– Limited success with traditional 

approaches
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Combustion Background: Lean Blowout

Industry 
Advisory 

June 26,     
 2008 
 
Background: 

On Tuesday February 26th, 2008, the FRCC Bulk Power 
System experienced a system disturbance initiated by a138 
kV transmission system fault that remained on the system 
for approximately 1.7 seconds. The fault and subsequent 
delayed clearing led to the loss of approximately 2,300 MW 
of load concentrated in South Florida along with the loss of 
approximately 4,300 MW of generation within the Region. 
Approximately 2,200 MW of under-frequency load shedding 
subsequently operated and was scattered across the 
peninsular part of Florida. 
 
Indications are that six combustion turbine (CT) generators 
within the Region that were operating in a lean-burn mode 
(used for reducing emissions) tripped offline as result of a 
phenomenon known as “turbine combustor lean blowout.” As 
the CT generators accelerated in response to the frequency 
excursion, the direct-coupled turbine compressors forced 
more air into their associated combustion chambers at the 
same time as the governor speed control function reduced 
fuel input in response to the increase in speed. This resulted 
in what is known as a CT “blowout,” or loss of flame, causing 
the units to trip offline. 
 
 

 

 



• Single-injector combustor test rig
• Relevant operating conditions

• Inlet air temperatures up to 700 F
• Gas turbine relevant pressures

• Substantial optical access for 
advanced diagnostics

• Acoustic probes (typical fielded 
single-point measurement)

Blowout Rig
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Windows for lasers 
and high speed 
cameras



• High speed images shown near-blowout 
physics
• Flame burns robustly
• Large holes in flame
• Flame is nearly extinguished, but reignites

• Intermittent stage can be sustained indefinitely
• Eventually, when fuel/air ratio is low enough, 

flame doesn’t recover
• Can we identify patterns in this extinction/re-

ignition that provide blowout precursors?

What does Blowout Look Like?
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• Combustion flame is maintained while an operator lowers the EQR until the 
flame is extinguished.

• Air Temperature and fuel type are kept constant at 450 K, and A2, 
respectively.

• Experiment is repeated for 10 units.
• Flame is monitored using a photomultiplier tube (PMT)

– Provides a univariate measure of flame intensity
– PMT Sampling rate of 10 kHz

• Reduced to 1 kHz using non-overlapping moving average for denoising
• EQR is controlled by the operator

– EQR Sampling rate of 1 Hz

Lean Blowout Experiments and Data 



PMT Data – Visualization 



EQR Data - Visualization



1. As the trend in the PMT signal is direct consequence 
of the EQR change, we filter out the effect of the 
EQR on the PMT.

2. The autocorrelation of regression residuals is 
removed using time-series models.

3. The outliers in training data are detected and 
removed using Shewhart control charts.

4. As PMT signals become more volatile close to lean 
blowout, an EWMS control chart is used to detect 
change in the variance.

Methodology Overview 



𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝐸𝐸𝐸𝐸𝑅𝑅𝑡𝑡 + 𝜖𝜖𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡

Methodology: EQR Filter

• After filtering the effect of the EQR
– Split data into Phase 1 and Phase 2

• Phase 1 (training) – System assumed to be 
working under normal operating conditions 
with only chance occurrences of outliers
– All modeling is done in Phase 1

• Phase 2 – At some point, a change in the 
system occurs and the goal is to detect this 
change
– Models applied to Phase 2



• Fit ARIMA and GARCH models on the Phase 1 
residuals from the PMTI vs. EQR regression 
model

𝑋𝑋𝑡𝑡 = 𝜇𝜇 + �
𝑖𝑖=1

𝑝𝑝

𝜙𝜙𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖 + 𝑎𝑎𝑡𝑡 −�
𝑗𝑗=1

𝑞𝑞

𝜃𝜃𝑗𝑗𝑎𝑎𝑡𝑡−𝑗𝑗

𝑎𝑎𝑡𝑡 ,𝑎𝑎𝑡𝑡−1, … are the prediction errors at time 𝑡𝑡, 𝑡𝑡 − 1, …
𝜎𝜎𝑡𝑡2 = 𝑉𝑉𝑎𝑎𝑉𝑉 𝑎𝑎𝑡𝑡 𝑎𝑎𝑡𝑡−1 = 𝛼𝛼0 + 𝛼𝛼1𝑎𝑎𝑡𝑡−12 + 𝜂𝜂1𝜎𝜎𝑡𝑡−12

• The resulting residuals after ARIMA filter 
exhibit less autocorrelation. 

Methodology: Time Series Filter

𝑋𝑋𝑡𝑡 = −0.041 + 0.241𝑋𝑋𝑡𝑡−1 + 0.430𝑋𝑋𝑡𝑡−2 + 0.365𝑋𝑋𝑡𝑡−3 + 0.440𝑋𝑋𝑡𝑡−4
+0.210𝑋𝑋𝑡𝑡−5 + 𝑎𝑎𝑡𝑡 − 0.609𝑎𝑎𝑡𝑡−1 + 0.237𝑎𝑎𝑡𝑡−2 + 0.708𝑎𝑎𝑡𝑡−3
𝜎𝜎𝑡𝑡2 = 0.0066 + 0.8935𝑎𝑎𝑡𝑡−12 + 0.0139𝜎𝜎𝑡𝑡−12



• Use 𝑥𝑥-bar and 𝑆𝑆 Shewhart control charts to detect and filter out outliers 
in Phase 1

• If outliers exist, remove them and refit the ARIMA model using the stored 
order

• When no outliers remain, use time series model residuals to monitor the 
system

Methodology: Outlier Detection and Removal

• �̅�𝑥 chart
𝐿𝐿𝐿𝐿𝐿𝐿,𝑈𝑈𝐿𝐿𝐿𝐿 = �̂�𝜇𝑥𝑥 ∓ 𝐿𝐿 �𝜎𝜎

• 𝑆𝑆 chart
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• To monitor the variance of residuals, we 
use Exponentially Weighted Moving 
Standard Error (EWMS)

𝑆𝑆𝑘𝑘 = 1 − 𝛾𝛾 𝑆𝑆𝑘𝑘−12 + 𝛾𝛾 ̅𝑧𝑧𝑘𝑘2

• Given false alarm rate 𝛼𝛼, 𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑈𝑈𝐿𝐿𝐿𝐿
are determined as 100(𝛼𝛼

2
) and 

100(1 − 𝛼𝛼
2

) percentiles of 𝑆𝑆𝑘𝑘 from 
Phase 1

Methodology: Monitor Variance Using EWMS
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EWMS Control Charts



Unit #/EQR [0.40,0.38] (0.38,0.36] (0.36,0.34] (0.32,0.34] (0.32-0.30] Total
1 0 24 1 4 39 68
2 1 0 0 37 0 38
3 0 16 21 24 25 86
4 0 0 2 41 181 224
5 0 0 2 0 74 76
6 0 0 0 1 6 7
7 0 0 0 0 3 3
8 0 7 9 7 7 30

10 12 2 0 1 8 23

Distribution of Alarms wrt. EQR



• Research Tasks:
– Project Management and Planning
– Combustion System Faults and Data. (Experimental)
– Turbine Faults and Data. (Experimental)
– Virtual Combustor and Turbine Probes. 
– Big Data Analytics for Gas Turbine Health Monitoring
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Review of Research Tasks



Timeline
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In Progress

In Progress

In Progress, baseline complete

In Progress, baseline complete

Complete

Complete

Complete



• Turbine fault data
• Additional hardware combustor faults (e.g. cracked 

combustor)
• Virtual probe developments 
• Further analytic modeling and developments
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Planned Research Activities



Thank You



Damaged Hardware Measurements

Eroded fuel/air premixer centerbody
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• Completed preliminary single-point and detailed measurements
• Example: flow visualization

Example Results
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Can we learn to associate detailed flame/flow dynamics 
patterns with single point acoustic measurements?



• Premixing hardware consists of a centerbody and 
swirler

• These parts commonly degrade
• When these parts degrade due to cracks/melting, 

they cause
• Worse emissions
• Narrowed operability
• Performance Loss

• Approach: Install damaged parts and assess ability to 
detect the issue

• Completed work:
• Baseline measurements complete for healthy hardware
• Design of eroded centerbody complete

Current Work: Seeded Hardware Faults
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centerbody

Baseline 
centerbody

Eroded 
centerbody

3.5” 3.0”
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