Midwest Regional Carbon **Sequestration Partnership**

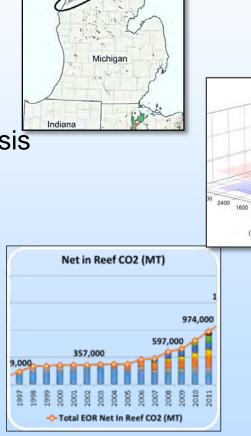
DOE/NETL cooperative agreement # DE-FC26-05NT42589

Neeraj Gupta **Battelle Memorial Institute**

NE NATIONAL ENERGY TECHNOLOGY LABORATORY BATTELLE

U.S. Department of Energy

National Energy Technology Laboratory


Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration:

Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Presentation Outline

- Introduction
- Technical Status
 - Characterization
 - Monitoring
 - MRV and Life-Cycle Analysis
 - Modeling
 - Outreach status
- Summary
 - Accomplishments
 - Lessons Learned
 - Synergy Opportunities

6-16 injector

1600

3200 2400

8-16 monitor

-800

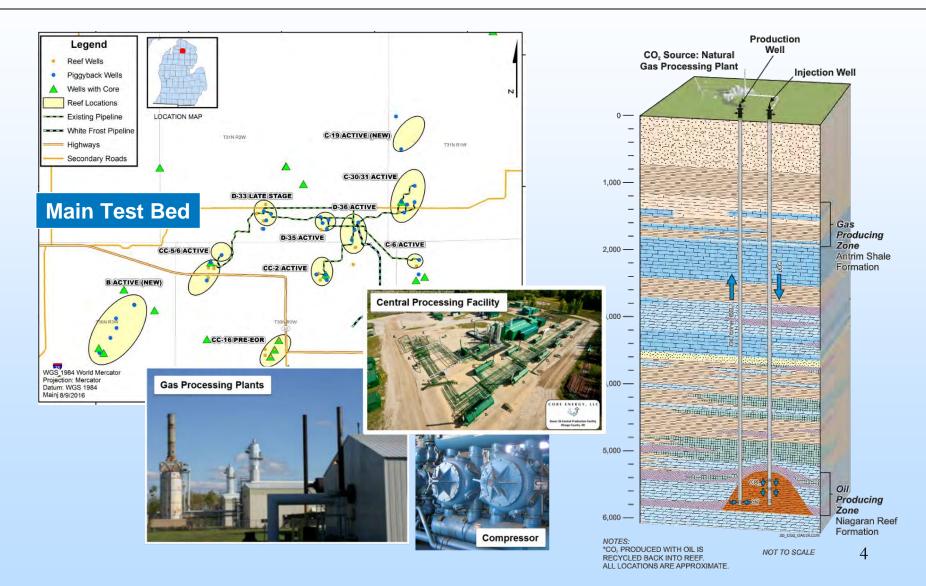
-1600 -2400

800

(ft) E of 6-16WH

MRCSP Goals and Objectives

Primary goal: execute a large-scale CO₂ injection test to evaluate best practices and technologies required to implement carbon sequestration


Objectives: Advance operational, monitoring, and modeling techniques needed to:

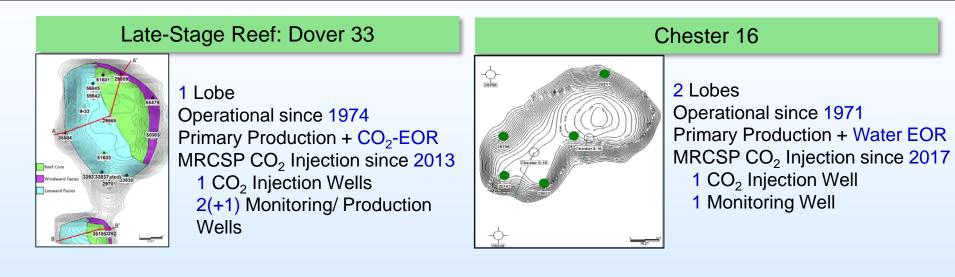
- Develop infrastructure for wide-scale CO₂ sequestration deployment
- Address public concerns such as leakage and long-term storage security
- Address other topics such as cost effectiveness and CCUS practicability

Large-Scale Injection Test

Geologic Setting in Michigan's Northern Niagaran Pinnacle Reef Trend

Injection Test Status Update

- ~1.1 MT tons CO₂ in net storage under MRCSP research
- >2 MT associated storage in 10 reefs over EOR lifetime since 1996


2,500,000 ~2,245,000 MT 2,000,000 ~ 1.1 Million Metric Tons CO₂ Stored **Over MRCSP Monitoring Period** Net in Reef CO2 (MT) 1'200'000 1'000'000 February 2013 – June 2018 ~1,150,000 MT 500,000 0 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 1996 *Net-in-reef CO₂ stored represents difference between

Net in Reef CO2 (MT)

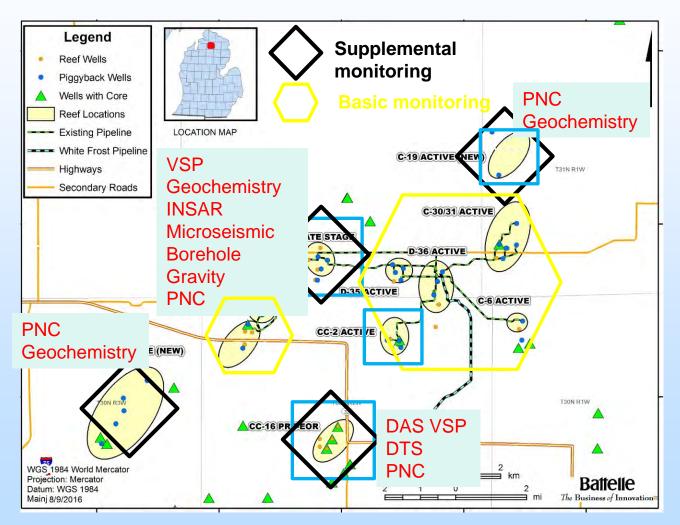
----- Total EOR Net In Reef CO2 (MT)

Large-scale Injection Test

Key Reefs Vary in Setting and Operational History

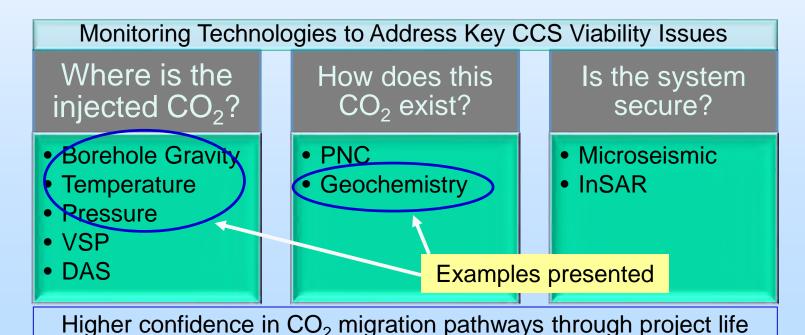
Charlton 19

2 Lobes Operational since 1988 Primary Production MRCSP CO_2 Injection 2015-2017 1 CO_2 Injection Wells 2 Monitoring Wells Currently in CO_2 -EOR

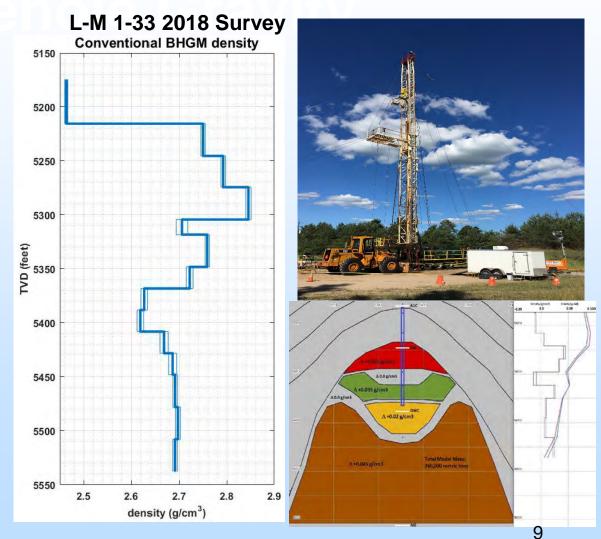

Bagley

4 Lobes Operational since 1973 Primary Production only MRCSP CO₂ Injection since 2015

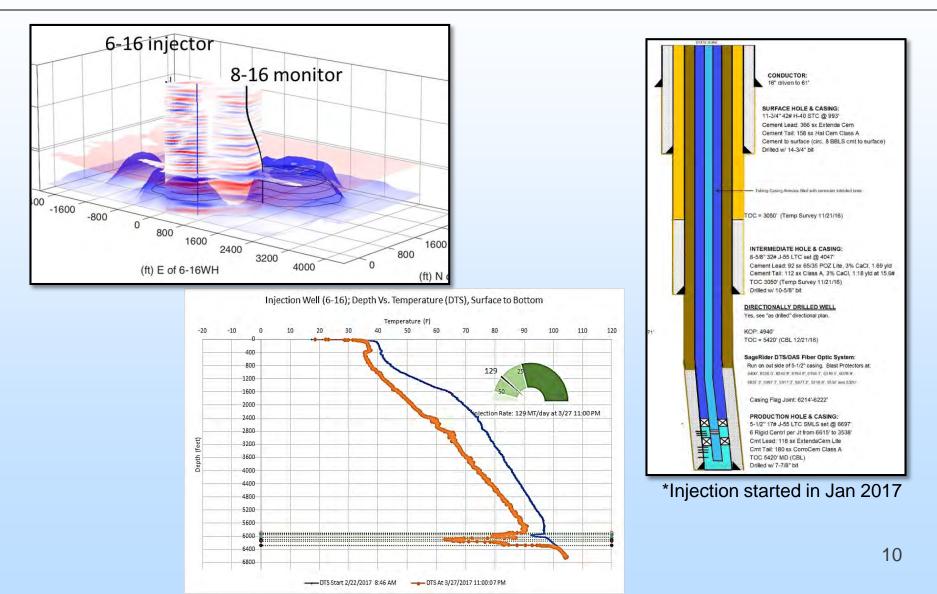
3 CO₂ Injection Wells 4 Monitoring Wells


Characterization and Monitoring Program well characterization data

- 10 reefs various stages of EOR
- All reefs monitored for CO₂ injection and reservoir pressure
- Additional monitoring on selected reefs
- Characterization (logs, cores, testing) in new wells


Monitoring Objectives

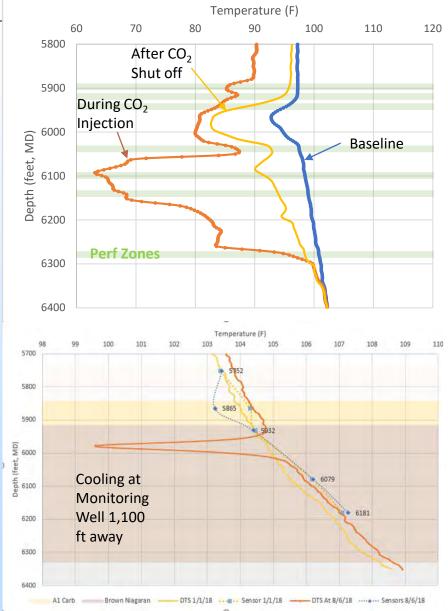
- Operational accounting for CO₂ during EOR
- Monitoring options to track and image plume
- Ensuring containment effectiveness by monitoring CO₂ storage integrity and retention


Borehole Gravity Monitoring

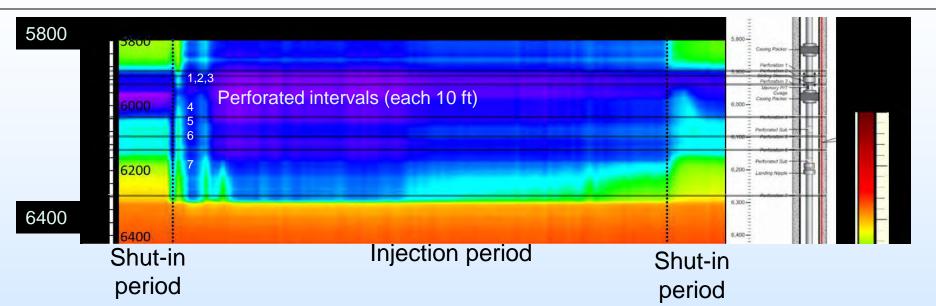
- Late Stage Reef
- Three surveys completed
 - Baseline Pre-MRCSP CO₂ (Jan 2013)
 - First Repeat 270K tonnes
 CO₂ (Sept 2016)
 - Second Repeat 130K tonnes CO₂ (July 2018)
- 2016 data shows 90 µGal (0.05 g/cm³) increase at top of reservoir – consistent with the mass of CO₂ injected
- Processing of 2018 survey underway

New EOR Reef 1: Chester-16

Advanced Monitoring - Distributed Fiber Optic Systems

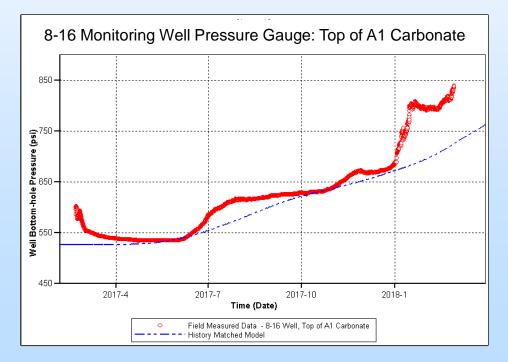


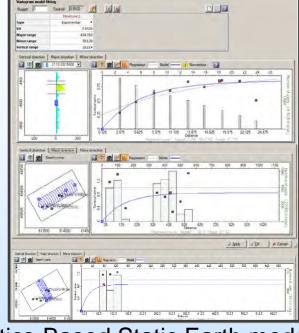
DTS Temperature Monitoring


- New Reef
- Temperature data recorded continuously with DTS
- Injection well and monitoring well
- Cooling in injection well indicates injection intervals.
- Cooling in monitoring well shows CO₂ breakthrough

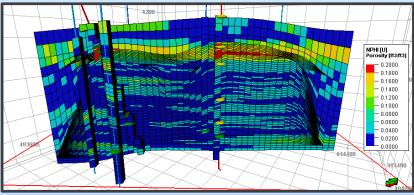
One of the first examples of CO₂ breakthrough using temperature data

DTS Monitoring (cont'd) Warmback & Differential Temperature Analysis

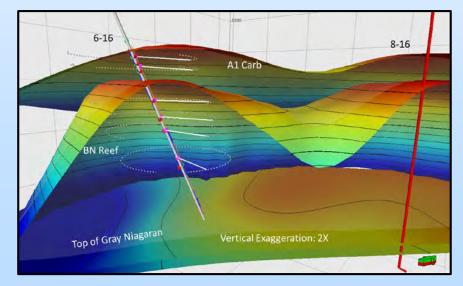


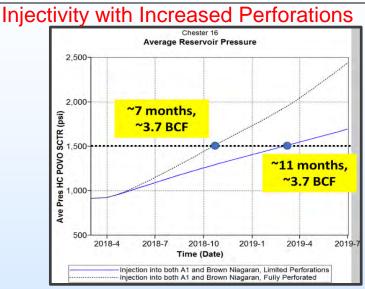

- "Warmback" analysis how quickly formations warm back to reservoir temp after injection stops
- Differential temperature analysis with some reference depthtemperature
- Identify perforated zones which received CO₂

Blue color (cooling) during shut-in periods provides more reliable indicator of which perf zones took CO₂

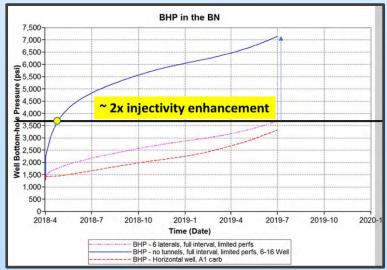

Dynamic Modeling of CO₂ Injection (Chester-16)

- Model successfully reproduced *reservoir* behavior during primary and waterflood production.
- Pressure response at monitoring well during CO₂ injection adequately replicated.


Geostatistics-Based Static Earth model

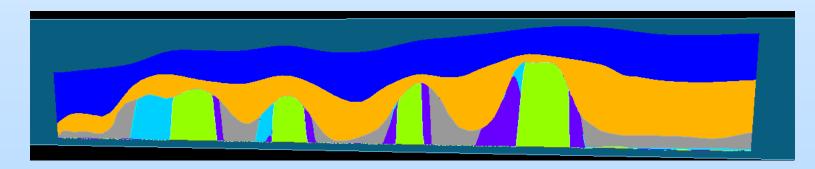


Using Model to Evaluate Alternate Engineering Solutions to Improve CO₂ Injectivity


- Increasing the number of perforations provides only marginal improvement
- Drilling radial "tunnels" is more effective; performs similar to a horizontal well

Radial Tunnels are small open boreholes drilled laterally from existing well

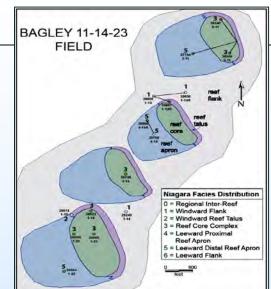
Injectivity with Radial Tunnels

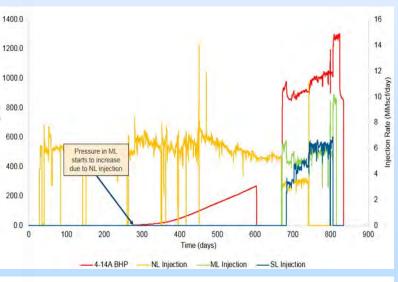


New EOR Reef 2: Bagley

Pressure Data Analysis to Infer Complex Reef Hydraulic Properties

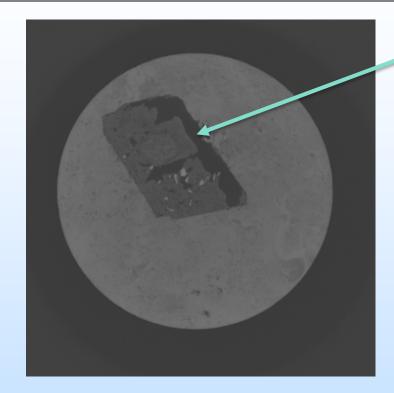
- Reef with 3 to 4 partly connected lobes having multiple CO₂ injection and monitoring wells
- Suite of basic and advanced monitoring deployed
- Continuously monitored pressure data subjected to hydraulic interference analysis to estimate inter-lobe connectivity





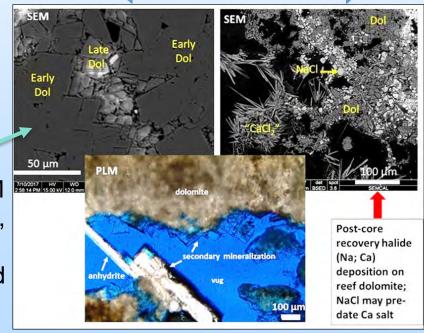
Pressure Interference Analysis

- Evident hydraulic communication between multiple lobes in the reef
- Analysis of delay time and well spacing allows calculation of reservoir diffusivity and permeability


Injection Lobe	Injection well	Response well		(++)	Diffusivity (ft²/s)	Permeability
	Name	Name	(days)	(14)	(1170)	(md)
		Mackowiac 1-11	13	1482	1.95	162
		Stevens 3-11	15	1200	1.11	92
North	Friel 2- 11	Glasser 1-14B	182	3252	0.67	56
		Wrubel 4-14A	228	4131	0.87	72
		Strappozon 3-14	555	6090	0.77	64
Middle	Wrubel 4-14A	Glasser 1-14B		1312	-	-
South	MBM 1- 22	Strappozon 3-14	38	1624	0.80	67

Pressure in middle lobe injection well showing effect of injection in northern lobe

Geochemical Monitoring: Visualization of pore-scale CO₂ behavior

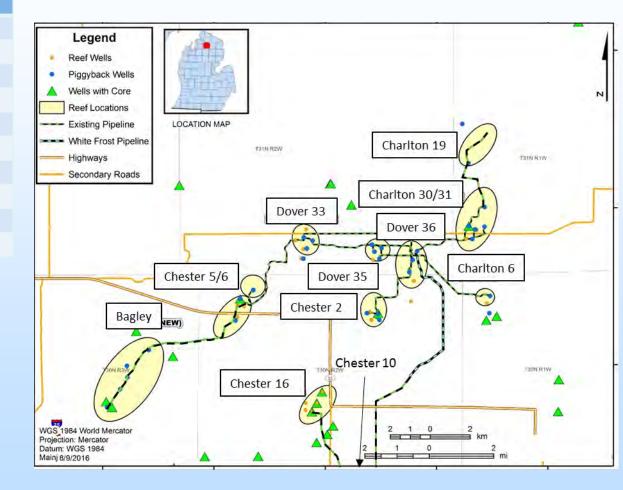


Microanalysis of individual crystals with SEM (EDX) reveals sylvite (KCI), calcium chloride, anhydrite (CaSO₄), and barite (BaSO₄). In addition, a low-Mg-Ca carbonate is observed in SEM as a pore-filling material.

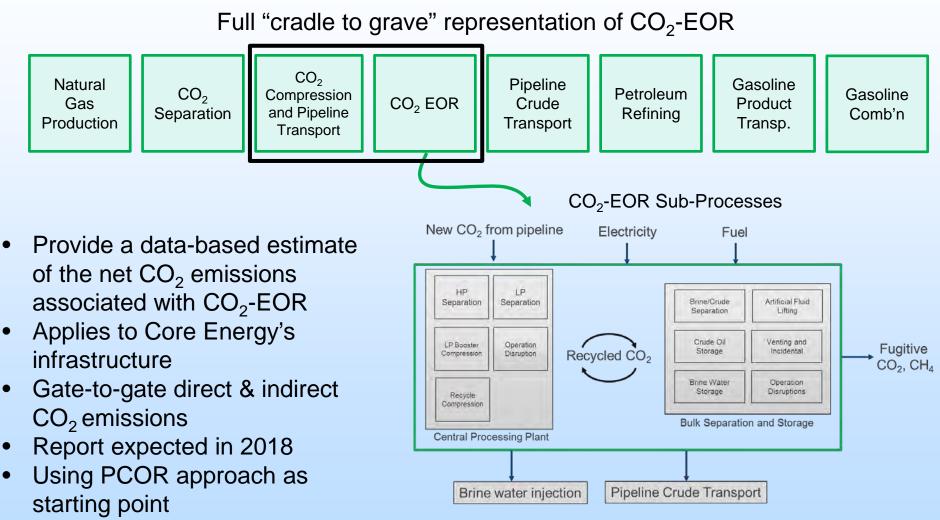
One XCT shows the formation of complex secondary mineralization within a rhombohedral-shaped vug (black) in dolomite (light gray groundmass).

> "Early Dol" is primary rock matrix; "Late Dol" is secondary pore-filling mineral.

Black is pore space; granular and splinter materials are secondary minerals

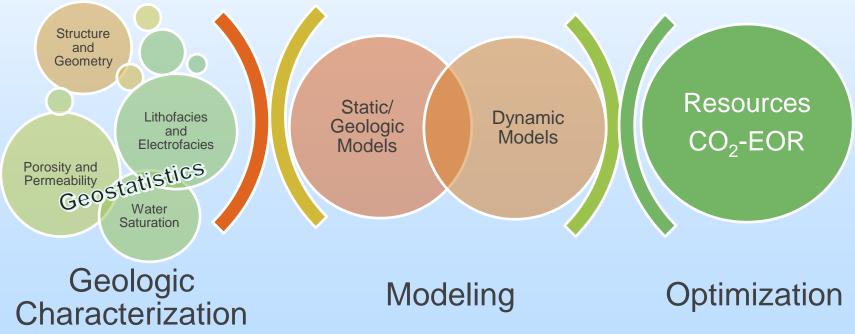


Monitoring, Reporting & Verification (MRV) Plan

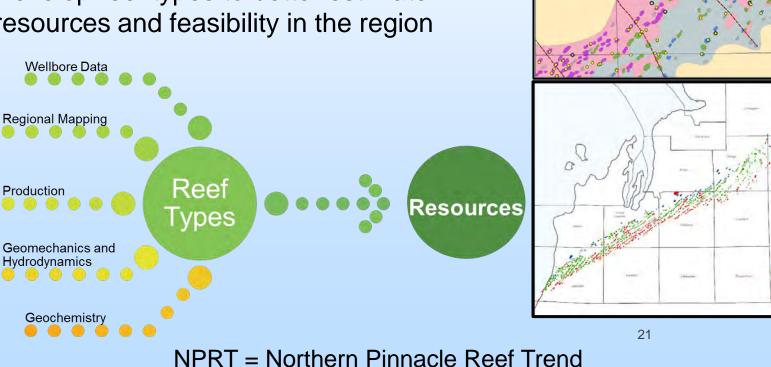

ate Initiated
996
996
004
006
800
009
011
015
015
017

Draft MRV Plan (Subpart RR, EPA):

- Project Description
- Delineation of Active & Maximum Monitoring Area
- Evaluation of Leakage Pathways
- Monitoring Baselines
- EPA Mass Balance Equations

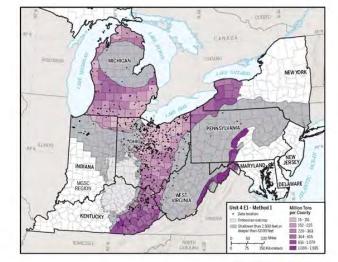


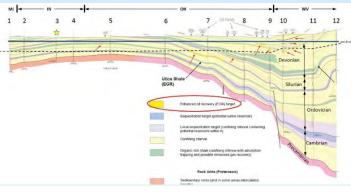
Life Cycle Assessment of CO₂-EOR


Improving Workflows for Reliable Geologic Modeling

- Robust integrated workflow to better characterize pore space
- Higher confidence in CO₂ storage estimates and potential migration pathways

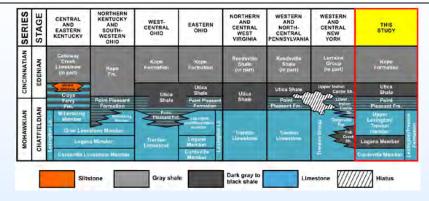
Expanding Geologic Characterization to Entire NPRT

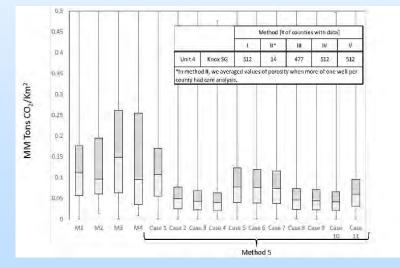

- Building off of individual reef characterizations to >800 reefs in NPRT
- Comprehensive database of reefs, wireline logs, core, production, etc.
- Develop reef types to better estimate resources and feasibility in the region


Reef Typ

Overall Strategy of Regional Characterization– Demonstrate Geological Storage Potential

- Establish fundamentals for CO₂ storage within the ten-state region and to qualify what volumes, how and where
 - Assess the potential reservoirs and seals in the region, including offshore
 - Determine the type of storage (saline, EOR or EGR reservoirs)
 - Quantify the potential storage resources
 - Generate products essential for siting, performance modeling, MVA


Storage resource estimate map


Regional cross section

Regional Characterization Task

- Establish fundamentals for CO₂ storage within the ten-state MRCSP region and to qualify what volumes, how and where
- Assess the potential reservoirs and seals in the region, including offshore
- Determine the type of storage (saline, EOR or EGR reservoirs)
- Quantify the potential storage resources
- Generate products essential for siting, performance modeling, MVA

Modeling of Ordovician Utica Shale

Box plots for differing SRE methods

MRCSP Outreach

Sharing Lessons Learned to Foster CCUS Development

Stakeholder Meetings

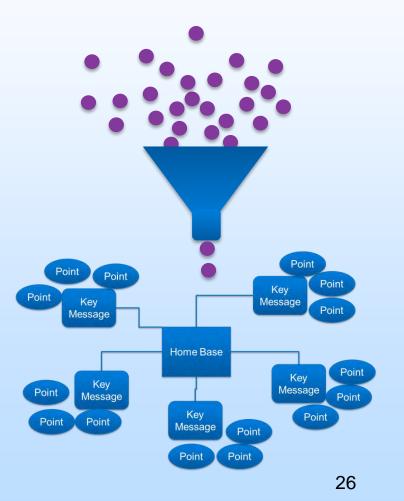
www.mrcsp.org

Factsheets and BPMs

Conferences and Papers

Message Mapping

MRCSP Outreach FY2018 Highlights


- Highly attended MRCSP Annual Meeting in Washington DC
- Participated in major conferences and workshops
 - Mexico EOR Conference
 - AIChE Conf. on regional carbon storage resource assessment
 - Harrisburg Univ. of Science and Technology CCUS meeting
 - Joint IEA/KAPSARC meeting on CO₂ EOR
 - CO₂ GeoNet program workshops and Tech Savvy conference
 - 3rd International Workshop on Offshore Geologic CO₂ Storage
 - IEAGHG Modelling and Risk Management Network Meeting
 - SPE/AAPG Regional Meetings
- Provided input into Permitting and Standards
 - DOE/EPA UIC meeting about permitting under MRCSP and related projects.
 - International Standards Organization (ISO) meetings
 - SPE SRMS System and Guidance Document

MRCSP Outreach

Next steps

MRCSP 2018 Meeting and Offshore Workshop, Annapolis, Nov 14-15

- Complete monitoring, including DAS-VSP and DAS-cross well surveys
- Final report document lessons learned
- Series of topical reports and papers
- Outreach summary for policy makers
- Information sharing meetings with stakeholders
- Develop an extensive bibliography of papers and materials
- Facilitate public access to technical and scientific information using DOE's EDX and/or other tools
 - Phase II data already loaded on EDX

Accomplishments to Date

All Critical Milestones and Objectives On Track

- >1,100,000 metric tons net stored under MRCSP monitoring
- >2.4 M metric tons stored since start of EOR in 1996
- Completed injection at main test bed in late-stage reef
 - Performed microseismic monitoring in final injection stage
 - Post-injection PNC, microgravity, and VSP completed
 - Post-injection test well drilled and characterized
 - Returned to normal EOR operations, with continued accounting and pressure monitoring
- Added new EOR reefs with complex geology to monitoring
- Drilled new wells and initiated advanced fiber-optic monitoring
- Advancements in static and numeric modeling processes
- Developed performance metrics to assess storage capacity

Project Summary

- MRCSP Large-Scale Test >80% completed with diverse EOR field setting and variety of monitoring options
- Multiple monitoring options are being tested
- Both monitoring and modeling are essential for understanding performance imperative to be able to do much with limited data
- Regional characterization helping identify new storage zones and estimate storage resources – setting stage for commercial scale CCS
- Results will contribute to developing standards and best practices, NRAP tools, CO₂ capacity estimation tools

Lessons Learned

- CO₂ measurement/accounting can be performed with high level of confidence in an inter-connected multi-field EOR complex
- Storage potential in closed reservoirs evaluated, after active EOR ends – EOR to storage transition
- Geologic complexity within and across reefs affects CO₂ injection, migration, and storage
- Pressure monitoring remains the mainstay for managing injection operations and monitoring reservoir response
- Advanced monitoring technologies still require testing/validation for confident assessment of plume development
- Characterization-monitoring-modeling loop requires more research for cross-validation over the life-cycle
- A well developed CO₂-EOR regulatory/policy framework with financial incentives essential for enhanced associated storage

Synergy Opportunities

- Geomechanical Stress Assessment (FOA1829)
- CarbonSafe Phase I (Ohio, Michigan, Nebraska) and Phase II (Nebraska, Kansas) projects
- Mid-Atlantic Offshore storage assessment
- Well integrity and risk management
- Brine disposal and induced seismicity research
- Knowledge share with RCSPs on monitoring and modeling
- Testing NRAP models and CO₂ Screen tools
- Collaboration with international projects South Africa, China, Mexico, Indonesia, Spain
- IEAGHG monitoring/Modeling Networks
- Input to DOE Best Practices Manuals

International Capacity Building – Extending MRCSP's Value

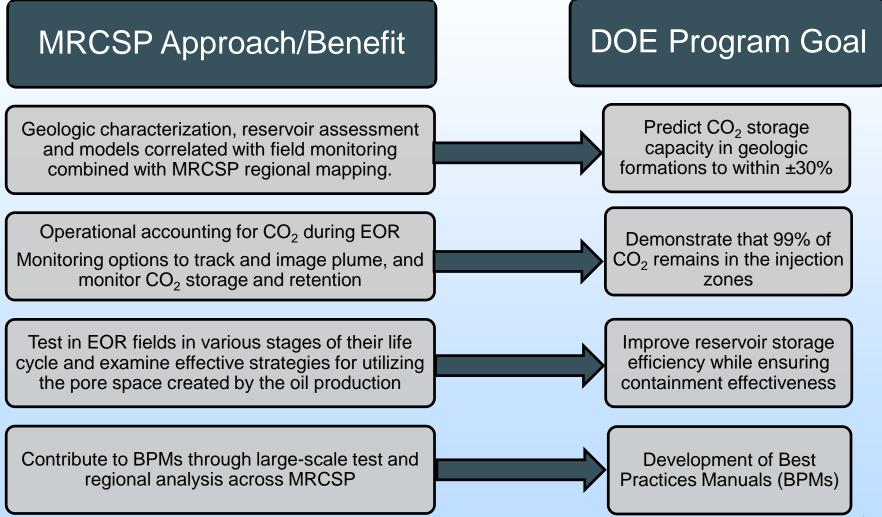
Acknowledgements

Battelle's MRCSP Current Contributors – Mark Kelley, Srikanta Mishra, Matt Place, Lydia Cumming, Sanjay Mawalkar, Charlotte Sullivan, Priya Ravi Ganesh, Autumn Haagsma, Samin Raziperchikolaee, Amber Conner, Glen Larsen, Joel Main, Jacob Markiewicz, Isis Fukai, Ashwin Pasumarti, Manoj Kumar Valluri, Andrew Burchwell, Jackie Gerst, Rod Osborne, and others

DOE/NETL – Agreement # DE-FC26-0NT42589, Andrea McNemar (PM)

Core Energy, LLC – Bob Mannes, Rick Pardini, Allen Modroo, Bob Tipsword, Kim Sanders, Kathy Dungey, and several others

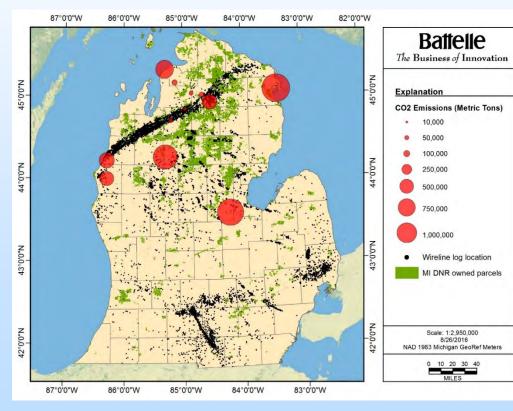
Ohio Development Services Agency's Ohio Coal Development Office

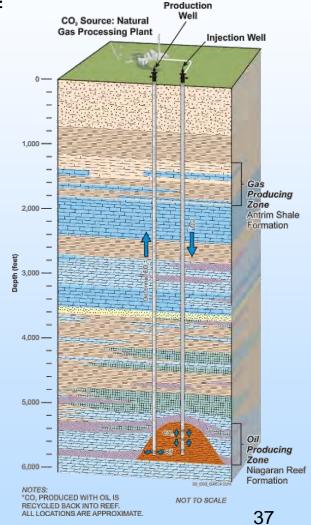

MRCSP's technical partners, sponsors, and host sites since 2003

The MRCSP Region's State Geology Survey and University team members

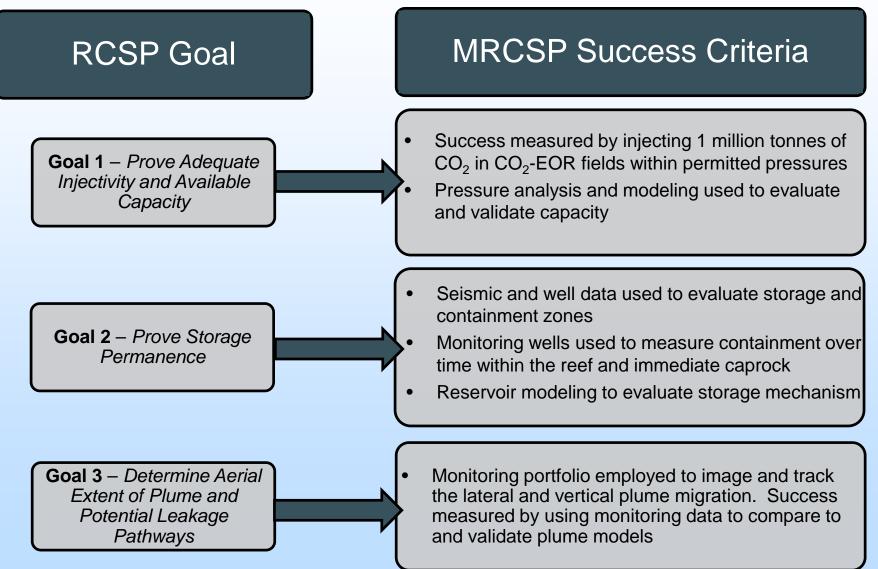
Appendix

Benefit to the Program

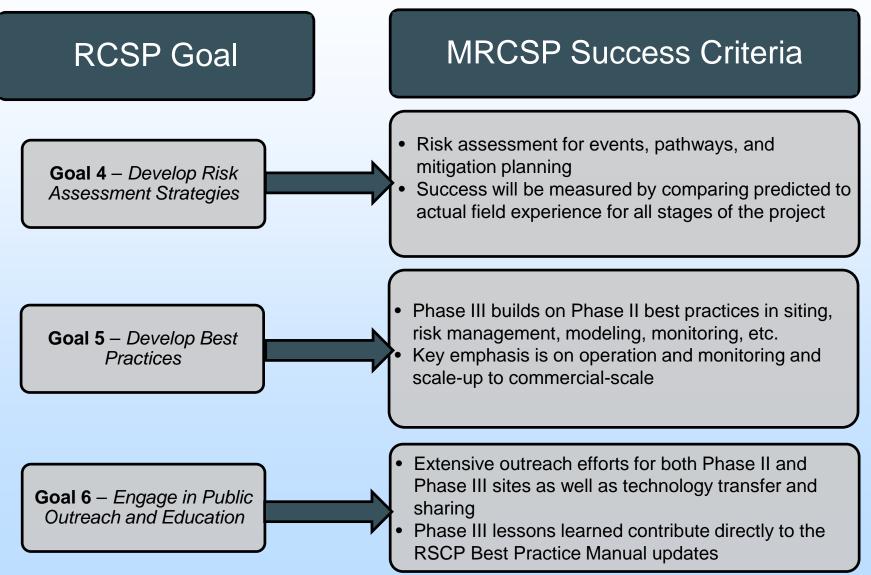



Project Overview Goals and Objectives

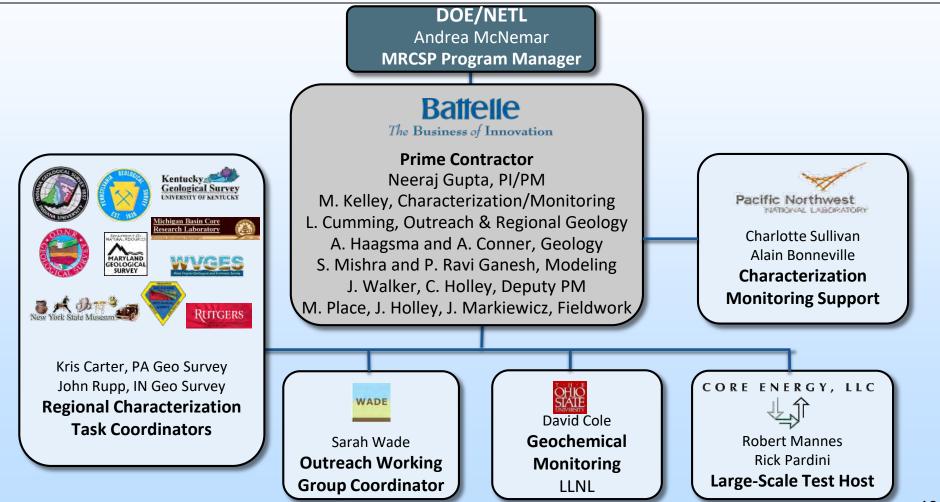
- Describe the project goals and objectives in the Statement of Project Objectives.
 - How the project goals and objectives relate to the program goals and objectives.
 - Identify the success criteria for determining if a goal or objective has been met. These generally are discrete metrics to assess the progress of the project and used as decision points throughout the project.


MRCSP Basin Large-Scale Injection

- Objective Inject/monitor 1 million metric tons of CO₂ in collaboration with EOR operations.
- Evaluate CO₂ injectivity, migration, containment



Project Overview Goals and Objectives


38

Project Overview Goals and Objectives

39

Organization Chart

MRCSP Scope of Work Structured Around Six Tasks

Task 1 **Regional Characterization**: Develop a detailed actionable picture of the region's geologic CO_2 storage resource base Task 2 **Outreach**: Raise awareness of regional CO₂ storage opportunities and provide stakeholders with information about CO₂ storage Task 3 Field Laboratory Using Late-Stage EOR Field: Pressurize a depleted oil field with CO₂ injection to test monitoring technologies and demonstrate storage potential Task 4 CO₂ Storage Potential in Active EOR Fields: Monitor CO₂ Injection and recycling in active EOR operations with different scenarios Task 5 **CO₂ Injection in New EOR Field(s):** Monitor CO₂ injection into an oil field that has not undergone any CO_2 EOR to test monitoring technologies and demonstrate storage potential Task 6 Battelle

Program Management

The Business of Innovation

Gantt Chart

M	IRCSP Phase III Schedule Yea		FY	12	_	FY13					FY14				FY15				F	¥16	-	FY17					F	/18		FY19			F	FY20	
No.	Task Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3 4	1	_	
4.0		-										71	5% (-									1								
1.0	Regional Characterization	_	_				-		-	-	-		0%(Jor	mpi	ete		-	-	-		-		-			_			_		_	_		
2.0	Outreach	-	-									75	5% (Cor	mpl	ete	:				-													_	
				_							Т	1	1	1		1	1						E			-	-		_	-		T			
	Reservoir Studies in Depleted Niagaran Ree	fs				-	-			_	-	9(0% (Cor	mpl	ete) 	-	_		_		-								_				
	NEPA EQ and Site Workplan																							_											
	Advanced Geological Characterization																																		
	Reservoir Modeling and Analysis																																		
	CO ₂ Injection																																		
	Monitoring and Analysis																																		
	Site Transfer				_											-					_	-	E												
4.0	Reservoir Studies in Active Niagaran Reefs				_							8()% (Cor	mpl	ete	:					1													
	NEPA EQ and Site Workplan									Г	Т	Т		Г	Т		Г			Г		Г	Г		Т	-									
	Reservoir Modeling and Analysis																																		
	CO ₂ Injection and Mass Flows			-																			Γ												
	Monitoring and Analysis																																		
5.0	Reservoir Studies New Niagaran Reefs	-	-													6	60%	Co	omi	olei	te														
_	Site Characterization Plan			-	-				-					E.	E.					-		E.	Г				-							-	
	Advanced Geological Characterization						-						-		1				Γ.				r	-	T		-							_	
	Reservoir Modeling and Analysis						-																												
_	CO ₂ Injection									1													Γ												
	Monitoring and Analysis														\square								Γ		\top										
	Site Transfer	-	-				-			1																									
			-		-	-								-				-		-				-		-	-							_	
6.0	Project Management						_	-				75%	% C(om	ple	te		_	_		_										_				
7.0	Deep Saline Formation Activities	-		20	% (Col	mp	lete	е		-					-		-			-	-												_	
	Document and Close St. Peter SS Well									Ī																									
	Approval of workplan before field work.				-																														
	Approval of basline geologic report befor	e in	ijec	tion	1																														
	Industry Review at MRCSP Annual Mee																																		
	Task Reports																																		
	Post-transfer monitoring																																		

Bibliography

Recent and upcoming publications and presentations:

- Raziperchikolaee, S., Kelley, M., and Gupta, N., 2018, Geomechanical Characterization of a Caprock-Reservoir System in the Northern Appalachian Basin: Estimating Spatial Variation of In Situ Stress Magnitude and Orientation." *Interpretation* 6, no. 3: 1-80, available at: <u>https://library.seg.org/doi/abs/10.1190/int-2018-0068.1.</u>
- Hawkins, J., Mishra, S., Stowe R., Makwana, K., Main J. 2017, CO₂ storage capacity and potential CO₂-EOR in oilfields of Ohio. Environmental Geosciences. 24 (1): 1-13, available at: https://doi.org/10.1306/eg.05161615019.
- McCarren, H, Haagsma, A, Conner, A, Mawalkar, S, Mishra, S, and Gupta, N. 2018. Residual Oil Zone EOR Potential in the Northern Pinnacle Niagaran Reef Trend. 47th Annual AAPG-SPE Eastern Section Joint Meeting, Pittsburgh, PA.
- Haagsma, A., Conner, A., Larsen, G., Scharenberg, M., Goodman, W., Harrison, W., Main, J., Smith, V., Pasumarti, A., Modroo, A., and Gupta, N., Regional characterization of an oil-bearing reef complex for factors affecting assessment of associated CO₂ storage. 47th Annual AAPG-SPE Eastern Section Joint Meeting, Pittsburgh, PA.
- Keister, L., Place, M., Conner, A., Smith, M., Carroll, S., Cole, D., Sheets, J., and Welch, S., 2018, Investigation of Potential Geochemical Reactions in Large-Scale Carbon Dioxide -Enhanced Oil Recovery (CO₂-EOR) Carbonate Reservoirs, 47th Annual AAPG-SPE Eastern Section Joint Meeting, Pittsburgh, PA.
- Haagsma, A., Mishra, S., Scharenberg, M., and Gupta, N., 2018. Statistical Analysis of Core and Wireline Log Data from the Northern Niagaran Pinnacle Reef Trend to Inform Static Earth Modeling for CO₂ Storage Fields. 47th Annual AAPG-SPE Eastern Section Joint Meeting, Pittsburgh, PA.
- Harrison, W., Haagsma, A., Main, J., and Conner, A., 2018, Reservoir Characterization of the Upper Silurian Bass Islands Formation in Northern Michigan for CO₂ Storage, 47th Annual AAPG-SPE Eastern Section Joint Meeting, Pittsburgh, PA.

Bibliography

Recent presentations:

- Ravi Ganesh, P., Mawalkar, S., Gupta, N., Pardini, R., and Tipsword, B., 2018, Injectivity index as an indicator of reservoir quality for geologic CO₂ storage in the Michigan Niagaran reef trend, Presented at the Carbon Capture Utilization and Storage conference, Nashville, TN.
- Haagsma, A., Kelley, M., Gupta, N., Conner, A., Modroo, A., Sullivan, C., Rine, M., and Goodman, W., 2017, Impact of geologic diversity on static earth models in a CO₂-EOR reef complex, Presented at the Carbon Management Technology Conference, Houston, TX.
- Mawalkar, S., Kelley, M., Gupta, N., Place, M., Mansouri, M., Pardini, R., and Shroyer, B., 2017, Distributed Temperature Sensing (DTS) in a CO₂-EOR Complex, Poster Presented at Mastering the Subsurface through Technology, Innovation and Collaboration DOE NETL meeting, Pittsburgh, PA.
- Haagsma, et al., 2017, Regional Variability of Michigan Niagaran Reefs and the Impact on CO₂ Storage Resources, Poster Presented at Mastering the Subsurface through Technology, Innovation and Collaboration DOE NETL meeting, Pittsburgh, PA.
- Cumming, L., Place, M., Hare, J., Black, A., Gupta, N., Modroo, A., and Pardini, R., 2017, Field testing the applicability of borehole gravity for monitoring geologic storage of CO₂ within closed carbonate reef reservoirs, Poster Presented at Mastering the Subsurface through Technology, Innovation and Collaboration DOE NETL meeting, Pittsburgh, PA.
- Kelley, M., Miller, D., Modroo, A., and Gupta, N., 2017, Baseline DAS VSP of the Chester 16 field (reef), Michigan, Poster Presented at Mastering the Subsurface through Technology, Innovation and Collaboration DOE NETL meeting, Pittsburgh, PA.
- Kelley, M., Paulsson, B., He, R., Modroo, A., Place, M., Markiewicz, J., and Gupta, N., 2017, Microseismic monitoring during CO₂ injection in a pinnacle reef reservoir, Poster Presented at Mastering the Subsurface through Technology, Innovation and Collaboration DOE NETL meeting, Pittsburgh, PA.

Bibliography

Upcoming publications and presentations:

- Gupta, N., Osborne, R., Holley, C., Lohner, T., Spitznogle, G., and Usher, M., 2018, 15 Years of CO₂ Storage Research at AEP Mountaineer Power Plant – Stratigraphic Test Well to Site Closure, Oral Presentation to be given at the 14th International Conference on Greenhouse Gas Control Technologies (GHGT-14), Melbourne, Australia.
- Mawalkar, S., Burchwell, A., Gupta, N., Place, M., Kelley, M., Winecki, S., Mannes, R., and Pardini, R., 2018, Achieving 1 Million Metric Ton CO₂ Stored; Measurement and Accounting for Net CO₂ Injection in a CO₂-EOR Complex, Oral Presentation to be given at the 14th International Conference on Greenhouse Gas Control Technologies (GHGT-14), Melbourne, Australia.
- Gupta, N., Moody, M., Sullivan, C., Hicks, N., Davids, S., Heinrichs, M., Kamrajh, N., and Beck, B., 2018, Development of the First CO₂ Storage Pilot Test for CCS Capacity Building in South Africa – The Phase I Experience, Oral Presentation to be given at the 14th International Conference on Greenhouse Gas Control Technologies (GHGT-14), Melbourne, Australia.
- Kelley, M., Mille, D., Modroo, A., and Gupta, N., 2018, Distributed Acoustic Sensing (DAS) Based Vertical Seismic Profiling (VSP) for Monitoring CO₂ Injected into a Pinnacle-Reef Reservoir, Oral Presentation to be given at the 14th International Conference on Greenhouse Gas Control Technologies (GHGT-14), Melbourne, Australia.
- Mawalkar, S., Burchwell, A., Kelley, M., Mishra, S., Gupta, N., Pardini, R., Shroyer, B., and Brock, D., 2018, Where is that CO₂ Flowing? Using the Distributed Temperature Sensing (DTS) Technology for Monitoring Injection of CO₂ into a Depleted Oil Reservoir. Oral Presentation to be given at the 14th International Conference on Greenhouse Gas Control Technologies (GHGT-14), Melbourne, Australia.
- Duguid, A., Glier, J., Heinrichs, M., Hawkins, J., Peterson, R., and Mishra, S., 2018, Practical leakage risk assessment for CO₂ enhanced oil recovery and storage in Ohio's depleted oil fields, Oral Presentation to be given at the 14th International Conference on Greenhouse Gas Control Technologies (GHGT-14), Melbourne, Australia.
- Along with nine Poster Presentations accepted to be presented at the 14th International Conference on Greenhouse Gas Control Technologies (GHGT-14), Melbourne, Australia.

Spare slides