

University Turbine Systems Research Project Review Meeting 30 October, 2018 Improving NOx Entitlement with Axial Staging Contract DE-FE0031227

Dr. Scott Martin Eagle Flight Research Center Embry-Riddle Aeronautical University Daytona Beach, FL

Hardeo Chin, Tommy Genova, Michelle Otero, Dr. Kareem Ahmed and Dr. Subith Vasu Mechanical & Aerospace Engineering Propulsion & Energy Research Laboratory Center of Advanced Turbomachinery & Energy Research University of Central Florida Orlando, FL

DOE University Turbine Systems Research Program PM: Dr. Seth Larson Industry Advisors: Drs. Keith McManus and Carlos Velez, GE Research Center

- Introduction
 - Motivation of Study
 - Recent Investigations
- Objectives
- Experimental Facility
 - Design and Concept
 - Target Conditions
 - Optical Diagnostics and Measurement
- Future Work

INTRODUCTION

Introduction

Axial Stage Combustion System

- Lean premixed combustion
- Axially staged fuel injection with short residence time
- Higher firing temperature

Minimize NOx with increasing turbine inlet temperature

- Gas Turbine OEM's are under pressure to increase efficiency without increasing emissions.
- Increasing turbine inlet temperature is one method to increase efficiency, but with a large NOx penalty.
- By injecting some of the fuel late in the combustor (axial staging) it burns with a shorter residence time, minimizing the NOx penalty.
- OEM's have tested full size axial staging designs at engine conditions, but are unable to obtain detailed measurements of the reacting jet-in-crossflow.

Axial Stage Combustion System Applications

- Power Generation
- Potential for Aircraft Engines

S. Hayashi et al., National Aerospace Laboratory, Japan

Combustion Symposium, 2000

- Lean-lean two stage combustion system
- Atmospheric test combustor
- Perforated-plate flame holder for primary flame stabilization
- Fuel/air mixture as quenching medium

NOx and efficiency for different first stage equivalent ratios in concentrated and distributed injection

7

S. Martin et al., Siemens Energy, Orlando, FL

U.S. Patent 8,387,398, 2013

- Apparatus and method for controlling the secondary injection of fuel.
- Adds multiple fuel nozzles in the transition.
- Can be used to improve temperature pattern factor entering the turbine.

D. Winkler et al., Switzerland

Journal of the Global Power and Propulsion Society, 2017

- Lean-lean two stage combustion system
- Atmospheric test combustor
- Secondary mixture injection between first and second stage
- Air as quenching medium

H. Karim et al., GE power, Greenville, SC

ASME Turbo Expo, 2017

- Lean-lean two stage combustion system
- Development testing in FA and HA class gas turbine
- Validation testing for 7HA.01 engine
- Premixers in a can (PM) vs Axial Fuel Staging (AFS)

9

OBJECTIVES

Develop a high pressure axial stage combustion test facility and explore novel configurations to implement axial staging with direct involvement of original equipment manufacturers (OEMs).

- Conduct experiments using the high pressure combustion facility.
- Tune rig headend to give similar NOx curve as current engines.
- Axial stage testing with Fuel/Air and Fuel/Diluent axial mixtures with various levels of premixing.
- Obtain detailed measurements of the burning jet to understand the design space and model validation.
- Axial Stage Modeling : Develop reacting jet-in-crossflow correlation and validate existing CFD capabilities.

EXPERIMENTAL FACILITY

Design and Concept

- Experimental setup consists of 3 main components
 - First Stage Burner
 - Mixing Section
 - Test Section
- Axial staged burner will be injected with various mixtures (fuel, fuel/air, fuel/air/CO₂) to characterize the secondary flame

• Stability Correlation Parameter = $\frac{V}{d} \frac{d}{d_e} \frac{P_o}{P} \left(\frac{1000}{T_{t_o}}\right)^{1.5} 10^{-3}$

*Adding small quantities of hydrogen increases the stability of burning methane at $\Phi = 0.6$

- High pressure-lean conditions are on the blow-out limit of the stability curve
- Adding hydrogen pilots will increase flame stability, but increases H₂O and decreases CO₂ produced

- $CH_4/30\% H_2 (\phi = 0.6)$ equivalent of CH_4 at $\phi = 0.78$
- Adding 30% H_2 results in a $\varphi = 0.03$ difference when compared to 25% H_2

Design and Concept – Flame Speed

Methane Pilot

Turbulence (%)	Laminar Flame Speed (m/s)	Turbulent Flame Speed (m/s)	Flame Angle (deg.)	$ec{V}_{lip}$ (m/s)	$ec{V}_{air} \ (m/s)$	$\vec{V}_{products}$ (m/s)	Mach Number	Mixing Length (in)
5		3.1	2.8					
10	0.257	5.9	6.0	60.3	24.1	180	0.43	9
15		8.8	8.9					

Hydrogen Pilot

Turbulence (%)	Laminar Flame Speed (m/s)	Turbulent Flame Speed (m/s)	Flame Angle (deg.)	\vec{V}_{lip} (m/s)	$ec{V}_{air}$ (m/s)	$\vec{V}_{products}$ (m/s)	Mach Number	Mixing Length (in)
5		3.1	2.8					
10	0.257	5.9	6.0	63.9	8.6	192	0.55	7
15		8.8	8.9					

Design and Concept – Air Bypass

Methane Pilot

Percent Bypass (%)	\vec{V}_{lip} (m/s)	$ec{V}_{air} \ (m/s)$	$ec{V}_{pilot}$ (m/s)	$ec{V}_{products}$ (m/s)	Mach Number	m _{fuel} bypass (kg/s)	m _{air} bypass (kg/s)	m _{air} core (kg/s)	m _{fuel} core (kg/s)
5	63.7	10.7	10.3	363	0.57	0.0011	0.0248	0.4752	0.0166
10	60.3	21.4	18.6	344	0.54	0.0020	0.0498	0.4502	0.0157
15	57.0	32.1	26.9	325	0.51	0.0028	0.0748	0.4252	0.0149

Hydrogen Pilot

% Hydrogen (by mole)	$ec{V}_{lip}$ (m/s)	$ec{V}_{air} \ (m/s)$	$ec{V}_{pilot}$ (m/s)	$ec{V}_{products}\ (m/s)$	Mach Number	m _{H2} bypass (kg/s)	m _{air} bypass (kg/s)	m _{air} core (kg/s)	m _{CH4} core (kg/s)
5	66.6	5.61	1.40	383	0.61	0.00011	0.0033	0.4967	0.0173
10	66.1	11.8	2.92	380.	0.61	0.00024	0.0068	0.4932	0.0170
15	65.5	18.5	4.57	378	0.60	0.00037	0.0108	0.4892	0.0167

First Stage Burner

Design Parameters Duct Area : 3 x 3.5 in • Main Burner 4 air bypass lines • Pilot Tube Single flame holder Step: ~0.5" • Air Line Perforated plate for uniform flow and prevent flashback • Air Flow **Headend Burner Methane** Injection Plenum **Testing Conditions** Inlet Flowrate : $60 \frac{m}{s}$ Primary Fuel : Premixed • methane/air $\Phi: 0.6$ • Pressure : 1 atm. (initial, . working up to 5 atm.) Bypass Air Outlet Flowrate : $146 \frac{m}{s}$ •

19

1665V

Outlat T

Mixing Section

20

Test Section: Glass Integration

• Glass thickness determined with following correlation:

$$t = \sqrt{\frac{P \times A \times SF}{21000}}$$

- P = Pressure
- A = Surface area of glass
- SF = Safety factor (10)
- 1" thick glass design can hold 91 psi with a SF of 10

Test section 3.5" tall and 3" wide

Side view for side plate, glass, and window plate integration

21

Advanced Optical Diagnostics and Measurements

(b)

- High-speed PIV system (20-40kHz)
- High-speed Schlieren (100 kHz)
- High-speed CH* and CH2O (40 kHz)
- LabVIEW control hardware and software
- Dynamic pressure transducers (PCB)

 $\overline{(a)}$

Fluidic jet Flame

- Measure NOx and CO in the flame
- TDLAS Overview
 - Measure Process Transmittance (I/I₀) at Specific Wavelength(s)
 - Diode Laser + 2 Photodetectors
 - Apply Photon Conservation
 - Beer-Lambert Law: $-\ln\left(\frac{I}{I_0}\right) = \sum_i \sum_j S_{ij}(T) X_j P L \phi_{ij} \left(\nu \nu_{0_{ij}}\right)$
 - Infer Process Path-Integrated Thermodynamic, Flow Conditions
 - Time-Resolved Composition, Temperature, Pressure, Speed
 - Non-Uniformity Along Line-of-Sight

- v = Optical Frequency (Hz)
- $v_{0ij} = Line Center Optical Frequency (Hz)$

Subscripts

- i = Quantum Transition
- j = Atomic/Molecular Species

Spatial temporally resolved for understanding evolution of emissions

Carbon Monoxide (target) and common interfering species (CO₂, H₂O, N₂O) absorption features at T = 296 K and P =1 atm (Left); and T = 1500 K and P = 40 atm (**Right**).

NO, NO₂, and interfering water absorption features at T = 296 K and P = 1 atm (**Left**); and P = 40atm (**Right**). Note the marked increase in absorption for NO and NO₂ at high pressures and the minimal water interference around 1600cm⁻¹ and 1900cm⁻¹.

Diagnostics will be validated using shock tube and high temperature cells

 Headend and axial fuel levels will be varied to explore the optimum fuel split for minimum NOx.

Fuel Jet Test Points													
φ (Headend)	0.6				0.63			0.66			0.	.69	
Headend T (°C)	1400				1450				1500			1550	
Axial ΔT	50	150	200	250	50	100	150	200	50	100	150	50	100

- Axial compositions, fuel only, fuel & air, and fuel/air & diluents.
- Axial composition will be premixed, non-premixed and partially premixed. Straight and swirl jets will be tested.

Headend Test

Measured temperature profile at exit of mixing section.

Pressure	ṁ _{air}	ṁ _{fuel}	Q	Temperature	Ф	Duct Height	Duct Width	
(atm)	(kg∕s)	(kg∕s)	(kg/m³)	(K)		(in)	(in)	
1	0.094	0.0039	1.25	300	0.712	3.5	3	

Velocity Profile

Measured velocity profile at exit of mixing section.

Figure 1.—Schematic of flow field for a confined jet in cross flow (shown for one-side injection of a single row of jets from the top duct wall).

From Holdeman et al., NASA/TM-2005-213137

- Excel based tool to predict non-reacting jet-in-crossflow (JiC).
- The data obtained in this project will be used to create a reacting JiC correlation.

- Modeling test section with measured conditions at the inlet.
- Will evaluate different combustion models in Star-CCM, Fluent and OpenFOAM.

Questions

