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Motivation of Study

. Gas Turbine OEM’s are under pressure to increase efficiency without increasing emissions.

. Increasing turbine inlet temperature is one method to increase efficiency, but with a large NOx
penalty.

. By injecting some of the fuel late in the combustor (axial staging) it burns with a shorter residence
time, minimizing the NOXx penalty.

. OEM’s have tested full size axial staging designs at engine conditions, but are unable to obtain

detailed measurements of the reacting jet-in-crossflow.

Axial Stage Combustion System Applications
« Power Generation

« Potential for Aircraft Engines
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S. Hayashi et al., National Aerospace Laboratory, Japan

Combustion Symposium, 2000
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« Lean-lean two stage combustion system
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S. Martin et al., Siemens Energy, Orlando, FL
U.S. Patent 8,387,398, 2013

«  Apparatus and method for controlling the secondary
injection of fuel.
e Adds multiple fuel nozzles in the transition.

« Can be used to improve temperature pattern factor

entering the turbine.
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D. Winkler et al., Switzerland

Journal of the Global Power and Propulsion Society,
2017

« Lean-lean two stage combustion system

«  Atmospheric test combustor

«  Secondary mixture injection between first and
second stage

« Air as quenching medium
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H. Karim et al., GE power, Greenville, SC
ASME Turbo Expo, 2017

« Lean-lean two stage combustion system

« Development testing in FA and HA class gas
turbine

« Validation testing for 7HA.01 engine

* Premixers in acan (PM) vs Axial Fuel Staging
(AFS)
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Objectives

Develop a high pressure axial stage combustion test facility and explore novel
configurations to implement axial staging with direct involvement of original equipment

manufacturers (OEMSs).

= Conduct experiments using the high pressure combustion facility.

= Tune rig headend to give similar NOx curve as current engines.

= Axial stage testing with Fuel/Air and Fuel/Diluent axial mixtures with various levels of
premixing.

= Obtain detailed measurements of the burning jet to understand the design space and
model validation.

= Axial Stage Modeling : Develop reacting jet-in-crossflow correlation and validate existing

CFD capabilities.
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EXPERIMENTAL FACILITY
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Design and Concept

» Experimental setup consists of 3 g
main components ¥
» First Stage Burner
« Mixing Section
» Test Section
» Axial staged burner will be injected
with various mixtures (fuel, fuel/air,
fuel/air/CO,) to characterize the
secondary flame

Fuel Line

Axial Staged
(diagnostic window)

B Head-end Mixing Section Outlet Conditions
Inlet Conditions Burner _
P =5 atm ——— P=>5atm
006 0 e R Choked to hold
My = 0.5 kgls — C—— pressure conditions

rhfuel =0.0177 kg/S

22 inches

Cut-out view of head-end burner and mixing section
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e Stability Correlation Parameter =

1.6

Flame Stability
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*Adding small quantities of hydrogen increases the
stability of burning methane at ® = 0.6
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High pressure-lean conditions are on the blow-out limit of the stability curve
Adding hydrogen pilots will increase flame stability, but increases H,O and decreases CO,
produced
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Methane Pilot

22 inches

Laminar

Turbulent

Turbulence Flame Flame Flame V.. Mach B
Angle g Length
(%) Speed Speed (deg)) (m/s) Number (in)
(m/s) (m/s) g
5 3.1 2.8
10 0.257 5.9 6.0 24.1 0.43 9
15 8.8 8.9
Hydrogen Pilot
Laminar | Turbulent Flame Mixin
Turbulence | Flame Flame V.. Mach g
. Angle alr Length
(%) Speed Speed (deg)) (m/s) Number (in)
(m/s) (m/s) 9.
5 3.1 2.8
10 0.257 5.9 6.0 8.6 0.55 7
15 8.8 8.9
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Mixing

22 inches
Methane Pilot
Percent I7u-p I7al-r Vpilot meducts Mach Mpyer DYPASS | my;, bypass | mg;, core | Mgye COre
Bypass (%) | (m/s) (m/s) (m/s) (m/s) Number (kals) (kals) (kg/s) (kg/s)
5 63.7 10.7 10.3 363 0.57 0.0011 0.0248 0.4752 0.0166
10 60.3 21.4 18.6 344 0.54 0.0020 0.0498 0.4502 0.0157
15 57.0 32.1 26.9 325 0.51 0.0028 0.0748 0.4252 0.0149
Hydrogen Pilot
% Hydrogen I7:lip Vair I7:pilot: I7:products Mach my, bypass Myir bypass Mg COIE Mcy, core
(by mole) (m/s) (m/s) (m/s) (m/s) Number (ka/s) (kals) (kg/s) (kg/s)
5 66.6 5.61 1.40 383 0.61 0.00011 0.0033 0.4967 0.0173
10 66.1 11.8 2.92 380. 0.61 0.00024 0.0068 0.4932 0.0170
15 65.5 18.5 4.57 378 0.60 0.00037 0.0108 0.4892 0.0167
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First Stage Burner

Design Parameters

. Duct Area:3x3.5in
Main Burner

—

* 4 air bypass lines

«  Single flame holder Pilot Tube

e  Step: ~0.5”
»  Perforated plate for uniform flow and prevent flashback . Air Line -
Methane ":’Hend"Bumehxﬁ-_

Testing Conditions Injection e Plenum
* Inlet Flowrate : 60% |
«  Primary Fuel : Premixed ’ | ' L | Ig,; e

methane/air " \ F ' : '
e ®-06 R o e a1 et

*  Pressure : 1 atm. (initial,

working up to 5 atm.)

«  Outlet Flowrate : 146 %




Mixing Section

 Need an appropriate mixing length to allow cold and hot Shear Layer Growth
flows to have a uniform temperature profile for axial jet

§ . (1-r)(A++5) (1=+5)/1++5) \ 5 _
— = (s 1-— = =0.167
x 2(1 4+ r/s) 1+29(1+7r)/(1—71) x

0.15 |

kS
* \elocity Ratio, r = Yoot 01f
Uhot
«  Density Ratio, s = Peold
Phot 0.05 -
* J = shear layer height
* X = mixing length . |
« (g =constant 0 o1

Head-end Burner Mixing Section

22 inches

Cut-out view of head-end burner and mixing section
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Glass thickness determined with
following correlation:

P xAXSF
21000

t =

* P =Pressure

« A= Surface area of glass

« SF = Safety factor (10)

* 17 thick glass design can hold
91 psi with a SF of 10

Test section 3.5 tall and 3 wide

Window Assembly — \

le

Side Plate Glass Window Plate
<4— (.25” Screw Clearance = ==
Holes
4257 O-ring
0.25 *—
0.757
— -
- 0.25”
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High-speed PIV system (20-40kHz)

» High-speed Schlieren (100 kHz)

» High-speed CH* and CH20 (40 kHz)
 LabVIEW control hardware and software

» Dynamic pressure transducers (PCB)

¥ V& Uniyarsity of Central Florida
1 #91364014
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* Measure NOx and CO in the flame
« TDLAS Overview
» Measure Process Transmittance (1/1,) at Specific Wavelength(s)
» Diode Laser + 2 Photodetectors
* Apply Photon Conservation
* Beer-Lambert Law: —In (é) = Z Z $ij(1)X;PLp;; (v - vOi,-)
* Infer Process Path-Integrated Therrlnoéiynamic, Flow Conditions |
» Time-Resolved Composition, Temperature, Pressure, Speed
* Non-Uniformity Along Line-of-Sight

Process [N

w

cm? erz)
w

cmzsﬂqz) Voy; = Line Center Optical Frequency (Hz)

v = Optical Frequency (Hz)

I = Transmitted Intensity (

Iy = Incident Intensity (
. cm™2

S;j = Linestrength (m)

T = Static Temperature (K)

X; = Mole Fraction

P = Static Pressure (atm)

- Diode Laser
;_f‘z:::sei?g:;:ﬂmn (cm) j = Atomic/Molecular Species
ij =

Subscripts

i = Quantum Transition
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Experimental Measurements: TDLAS for NOx, CO

20

00 2050 2250 2300

2100 2150 2200
Wavenumber (cm ")

In..'l\. 'll' -.

Ll

Wavenumber {em™")

Absorption Coef. {cm'1]

Absorption Coef. {r;rn"J

Wavenumber {cm’™ ")

Spatial temporally resolved for

understanding evolution of

emissions

Carbon Monoxide (target) and
common interfering species (CO,,
H,O, N,O) absorption features at
T =296 Kand P =1 atm (Left);
and T = 1500 K and P = 40 atm
(Right).

NO, NO,, and interfering water
absorption features at T = 296 K
and P = 1 atm (Left); and

P =40atm (Right). Note the
marked increase in absorption for
NO and NO, at high pressures
and the minimal water
interference around 1600cm* and
1900cm-L.,

Diagnostics will be validated
using shock tube and high
temperature cells
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Target Test Conditions

= Headend and axial fuel levels will be varied to explore the optimum
fuel split for minimum NOX.

Fuel Jet Test Points
¢ (Headend) 0.6 0.63 0.66 0.69
Headend T (°C) 1400 1450 1500 1550
Axial AT 50(150{200{250|50(100|150]200{ 50 [100(150|50|100

=  Axial compositions, fuel only, fuel & air, and fuel/air & diluents.

=  Axial composition will be premixed, non-premixed and partially premixed.
Straight and swirl jets will be tested.
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Headend Test
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Height

Temperature Profile

Measured temperature profile at exit of mixing section.

Center Line Temperature Distribution
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Width(in)

Temperature Distribution
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2.5

I|| 1300

1200
1100
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a00

BOD

700

Temperature (K) Length(in)
Pressure | M, | Meyel ) Temperature @ Duct Height Duct Width
@m) | (ke/9) | (e/s) | (kg/m?) (K) (in) (in)
1 0.094 | 0.0039 1.25 300 0.712 35 3
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Velocity Profile

Measured velocity profile at exit of mixing section.
Co-Flow Velocity Profile

3.5 21
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Jet-In-Crossflow Correlation

Um _
™ Y

2=

Figure 1.—Schematic of flow field for a confined jet
in cross flow (shown for one-side injection of a
single row of jets from the top duct wall).

From Holdeman et al., NASA/TM—2005-213137

 Excel based tool to predict non-reacting jet-in-crossflow (JiC).
« The data obtained in this project will be used to create a
reacting JiC correlation.
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« Modeling test section with measured conditions at the inlet.
« Will evaluate different combustion models in Star-CCM, Fluent and OpenFOAM.

Temperature (K)
14

287.83 668.99 1050.2 31.3 1812.5 2193.6
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Questions

Questions
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