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Methane Hydrate Areas of Interest 

• Methane Hydrate Advisory Committee Report to the U.S. Congress 
(2007). 4 Recommended areas:

- Permafrost hydrate production testing
- Marine hydrate viability assessment
- Climate effect of hydrates
- International cooperation 

• DOE Methane Hydrate R&D Roadmap (2006)  



BNL R&D Focus: Sediment Hosted Hydrates 

Goal:  
• To understand sediment hosted gas hydrate systems through 
laboratory mimics with emphasis on natural fine-grained sediments for 
relevance to climate change.  

BNL Approach
• Establish changes in sediment lithology.
• Decomposition kinetics at Macro scale [FISH* unit]
• In situ hydrate growth behavior at Micro scale [CMT**]
• Establish a correlation between Micro and Macro data and its 
relevance to the well log data.

*FISH: Flexible Integrated Study of Hydrates 
**CMT: Computed Microtomography  



Host Media

• Glass Beads

• Ottawa Sand

• Natural Depleted   

Sediment

FISH

CMT & XRF

Jerguson Gage - 198 
mL, 20 MPa, 2-25oC

Temco DCHR – 308 
mL, 20MPa, 2-25oC

Unconsolidated 
Samples

Consolidated Sand 
Samples

Properties and Data
Output

• Methane hydrate 
formation kinetics

• Dissociation profiles via 
depressurization

• Absolute permeability of 
sediments

• Effect of overburden 
pressure on 
formation/dissociation 

XRF
• Sediment 
Characterization

• Elemental analysis

CMT
•2D/3D images

• Porosity

• Tortuosity

• Time resolved growth 
kinetics

• Microstructure model 
identification

Sample Cells
• Jacketed Syringe (1 mL) –
1 atm. P, 2-25oC Temp.

• Sapphire Cell ( ~ 10 mL) –
up to 10 MPa P, 2-25oC 
Temp.

Instrumentation
• Beamline X2B, X26A, 
NSLS/BNL

• Data Acquisition - IPLAB

Samples
• Host medium

• THF Hydrate in sediments

• Methane hydrate in sediments

Data Reconstruction 
& Analysis Tools
• IDL

• ImageJ

• Drishti



Developed/Available Facilities  

1” Thick 
Glass End Cap Retainer

Distribution 
Plug

Viton 70 
Rubber Sleeve

P/T Port
P/T Tap

Overburden P 
Fluid

FISH
Jerguson Gage

V = 198 mL
CMT

Sapphire Cell
High P = 8 MPa

FISH
Temco DCHR

V = 309 mL

Other
• Beamline X-2B, NSLS/BNL: CMT work
• Neutron diffraction high P cell (Developed at SBU) 



Methane Hydrate Stability

http://www.usgs.doe.gov/



Natural Hydrates in Sediments

Gas hydrates dissociating from sea-floor mounds

Gas hydrates can occur as nodules, laminae, 
or veins within sediments

Ross & Proenza and ODP



Known Hydrate-in-Sediment Models 

Dai et al., 2004



Sediments-hosted hydrates at the MACRO Scale   

FISH Unit

Natural Sediments 
Blake Ridge (BLR)

Gulf of Mexico (GoM)

Task 1: Unit modifications 
Task 2: Methane hydrates- unconsolidated 
Task 3: Methane hydrates- consolidated cores



Task 1

FISH unit modifications 



The Original BNL FISH UnitThe Original BNL FISH Unit

Gas delivery
system

P control
& 

Gas 
collection

System

Pressure vessel
(Interchangeable)

Process 
conditions 
simulator 
tank          

Kinetic data 
collection & 
analysis

Data collection 
(acoustics)



The Modified FISH Unit
Gas Delivery System

Data Acquisition 
Labview

P Monitoring

Process Condition  
Tank

Gas Collection System

N2 Back 
Pressure

Isco Syringe 
Pump

Isco Pump Controller



The Modified FISH Unit- Schematics



Task 1: FISH Unit Modifications

• Labview for data acquisition 
• Temco cell addition for confined cores
• Isco pump 
• Gore-tex membrane addition
• Precision T controls 
• Capability to form both unconsolidated and 
consolidated cores.



1” Thick 
Glass

Task 2

Methane Hydrates- Unconsolidated  



Mimicking the Sea-floor

1” Thick 
View Glass

Sediment-Hydrate-Water 

Methane Bubbles

Hydrate at Seafloor

Jerguson See-through Cell



Formation Methods: Dynamic and Static Modes

Gradual charging of Methane 
(<2000 mL/min)

Free Gas Cap
Water Column

CH4
Diffusion

Sediment-Water 
Slurry

Rapid charging of Methane 
(>>2000 mL/min)



Dynamic mode – Effect of Flow rate
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> 1000 mL/min (0.035 m/s)– minimal gas hold up
< 150 mL/min (0.005 m/s)– highest gas hold up



Formation Kinetics (3.5oC, 1500 psig, <2000mL/min, BLR)



Dissociation Kinetics (Ti=2.5oC, Pi=1500 psig) 



Dissociation Kinetics 



Static mode (2oC, 1500 psig, >2000mL/min): GoM vs. BLR

Sediment
2 cm 

hydrate 
growth

Hydrate vein 
and small 

hydrate nodule

BLR
Particle size: 21 µm
Medium to coarse silt

GoM
Particle size: 6 µm
Fine to very fine silt



Gas Hydrate Configurations – Massive in BLR

Sloan, 1998; Collett, 2000

Massive Methane Hydrate in Blake Ridge (BLR) 
Sediment (2oC, 1500 psi) Formation and 
Dissociation (Eaton, 2007)



Gas Hydrate Configurations – Nodules or Veins in GOM

Sloan, 1998; Collett, 2000

Nodules and Veins of Methane Hydrate in Gulf 
of Mexico (GOM) Sediment (2oC, 1500 psi) 
(Eaton, 2007)



Conclusions- Unconsolidated Cores  

• Total runs: 23
- Dynamic mode: 10
- Static mode: 13

• Run Conditions: P: 900-1500 psi; T: 2-10oC; CH4 flow rate: 70-2000 mL/min.

• At gas flow rate < 200 ml CH4/min to the cell, a marked increase in gas uptake by hydrates 
in the BLR sediments (increased gas holdup from the larger grained sediments).

• Static-charge formation method revealed that;

- hydrate formation rates in fine-grained sediments were mass-transfer-controlled, close 
agreement to theory (gas uptake time of over 2 weeks).

- in coarse/more porous sediments (BLR), gas uptake rates were enhanced compared to 
those in the fine-grained sediments. 

• Type of hydrates formed: 

- Coarse BLR sediments: large masses of hydrate which excluded sediments

- Fine-grained GoM sediments: typically formed tiny nodules/veins against the glass of 
the reactor with remaining gas uptake formed hydrates dispersed within sediment in the 
column. 



Conclusions- Unconsolidated Cores (Contd.) 

Dissociation kinetics in natural sediments (GoM and BLR):

- Warmer the temperature of hydrate formation/dissociation, greater the T 
drop while dissociation
- With increasing pressure drop for hydrate dissociation (Peqm-Psys), the 
host  sediment requires more time for T to warm up after dissociation 
- BLR sediments resulted in the quickest warm up after dissociation than 
those from GOM.



Task 3: Methane Hydrates- Consolidated

End Cap Retainer

Distributio
n Plug

Viton 70 
Rubber Sleeve

P/T Port
P/T Tap

Overburden 
P Fluid

Temco vessel

• Replace Jerguson vessel with Temco vessel in the FISH unit.



Confined Cores- Experimental Conditions  

• Sediment: Ottawa Sand ( 110 µm grain size)
• Sediment bulk density: 1.625 gm/mL
• Core Dimensions: D= 2”, L= ~6”(Volume: ~284.6 mL)
• Water saturation: 100%
• Confining pressure: 1300 psig
• Core holder: Temco DCHR w/3 pressure ports (1”, 3”, 5”)
• Methane purity: > 99.99%
• Methane charging flow rate: < 2000 mL/min (gradual charge)
• Methane hydrate formation conditions: ~ 1200 psig, 4oC
• Methane hydrate dissociation conditions:

• 100 psi ∆P from equilibrium pressure
• 200 psi ∆P from equilibrium pressure



Confined Cores: Formation 
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P/T during Dissociation (w/100 psi ∆P)
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Gas Evolved during Dissociation (w/100 psi ∆P)

Equilibrium T locus

∆P = 100
∆P = 200

∆P = 300



Cumulative Gas Produced during Dissociation
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Where do hydrates start to dissociate?
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• Dissociation front moves from the center towards the wall.
• Methane hydrate saturation = 73.3%.



Conclusions: Consolidated cores

Host: Ottawa sand (110 µm)

Hydrate formation (at 1200 psig / 4ºC/108 mL pore water):
• Slow (60 hrs) for the pore pressure to asymptote to the equilibrium pressure.
• Upon recharging, t = 90 hr to equilibrate as more pore water is consumed over 

time.  

Hydrate dissociation with the depressurization technique
• Instantaneous gas output as high as 50 L/min for both 100 and 200 psi pressure 

drop below the equilibrium pressure.  
• The greater the pressure drop during dissociation, the higher the degree of cooling. 
• A longer time period was observed for sediments to reach initial in-situ T.
• Enthalpy of dissociation = 59.1 kJ/mol (from Clausius-Clapeyron equation).
• The pressure drop of 200 psi was enough to completely dissociate methane 

hydrates formed in confined sediments in all the runs.
• Methane hydrate saturation = 73.3%. 



Conclusions: Consolidated cores (Contd.)

• During the endothermic methane hydrate dissociation, T of the core followed 
the order: Center (T3) < half-radius (T2) < wall (T1).

- Hydrate front started to dissociate from the center towards the wall.  

• Hydrate formation threshold:  
- Unconsolidated (~ 30 min. lag) vs Consolidated (none)



Sediments-hosted hydrates at MICRO Scale  

Goal: Establish hydrate growth behavior

Computed Microtomography (CMT)

Beamline X-2B
Brookhaven National Laboratory (BNL)

National Synchrotron Light Source (NSLS)

Task 4. Sediment Characterization
Task 5. In Situ Hydrate formation/dissociation  



Task 4

Sediment Characterization

• Blake Ridge (BLR)
• Gulf of Mexico (GoM)



Host Sediments: BLR

ODP Leg164, Site 995A, 667.85 
mbsf, WD=2278.5 m, Bulk porosity 
= 51%, Average depth mbsf – 200-
425

KC151, Hole#3, 1 mbsf, WD=1311 m, well 
depth: 440 mbsf.

NETL; Collett, 2004



Host Sediment: GoM

14.62% Silt

84.27% Clay size

1.12% Sand

ClaySediment

2.305Void ratio 

1541Bulk density 
(kg/m3)

2715.75Grain density 
(kg/m3)

87.15Water content 
(solids %)

35.775Salinity (ppt)

KC151-3 (0-10mbsf)

KC151, Hole#3, 1 mbsf, WD=1311 m

(Winters et al., 2008)

NETL; Collett, 2004



SEM/EDX Analysis– GoM and BLR

Diatom Blake Ridge

Gulf of Mexico



Particle Size Distribution: GoM vs. BLR

Francisca et al., 2005: GoM (GC185, MC752)-
– 48% clay size (< 2µm) or 5% of sediment 
grain diameter >75µm.



Set up of X2B at NSLS/BNL

Incident X-ray

Sample

Rotational 
Stage

Translational 
Motor

Scintillator & 
Lens

CCD Camera at 
90o

• Source type: Bending magnet
• Energy range: 8-35 keV
• Mono crystal/ grating: Si(111)
• Angular scan: 180 deg. (maximum 1800 

views)

• Scan variables: Beam energy, ROI, angular 
increment, exposure time etc. 

• Absorption tomographic scanning: IP Lab, 
ExxonMobil Res. & Engg)

• Output file format: filename.prj (~ 1GB)



Task 4: Conclusions

• Particle size: BLR > GoM

• BLR- Reported earlier
- *Porosity (CMT): 68.6%; Tortuosity (CMT): 1.81

*Bulk porosity: 70.0% (Winters et al.) 

• GoM
- CMT data complete. Analysis nearly complete.



Task 5

In Situ Hydrate Formation/Dissociation 

• Optimization of CMT data reconstruction steps
• System: THF/Water/Glass beads



THF Hydrates- Literature

Santamarina and Ruppel (ICGH 2008, Vancouver) 

• Based on THF hydrate bearing sediments: Factors 
controlling mechanical properties:
- Loci of hydrate formation at the pore scale
- Soil characteristics
- Impact of hydrate formation technique. 



Surrogate for Methane – THF! 

• Solution: Water-THF 
(40-60 wt%)

• Salt: For density contrast
• Cell: 1 cc
• Porous Media: 500 micron 

glass beads
• T: < 4oC 
• P: 1 atm
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Vertical Stack of 300 Images -Video

78:39 Hours; X2b-112-1 Ymin51Ymax350



2-D Hydrate Growth with Time

26:28 28:53 54:06 

70:30 74:07 78:38 



Time Resolved 3-D Hydrate Growth 

Time resolved THF hydrate growth in glass beads serving as host.
The 3-D structures are rendered from tomography scans at cooling times
(a) 29 h, (b) 54 h and (c) 78 h. The glass beads are not shown to allow 
enhancement of the contrast for distinct observation of THF-hydrate 
growth (shown in grey scale). 



Conclusions- CMT Data

• 2-D images and grain-to-grain match between the specific 
vertical cross-section images from different tomoscans 
taken with time indicates the growth of hydrates displaces 
beads within the unconsolidated pack.

• The 3-D volumes rendered from stack of images from each 
tomoscan with time show the growth of hydrate patchy and 
preferentially from already nucleated region.

• Confirms the microstructural model hydrate-water-grain 
system as “pore filling, i.e. growing in pores” cementation 
model.

• The Contact angle is being calculated.



Ongoing and Future Work

FISH unit- Macro
• Continue hydrate cores in the Temco cell.

- With GoM fine grained sediments
- Sediments from the India cruise   
- In pore water from cruises  [R. Coffin]

CMT- Micro 
• Finish analysis of the CMT data for the GoM sediment characterization. 
• High P cell design for in situ studies. 
• Extend the THF work to methane.  

Relevance to Climate Change Models
• Compare the hydrate decomposition data hosted in natural sediment 

from different sites.
• Utilization of hydrate decomposition data in climate change models.   
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