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1 Problem Setting

Loss of stress support caused by hydrate dissociation may result in a significant reduction
of rock strength. The strength of a hydrate-bearing sedimentary formation is a function of
the strengths of inter-granular bonds and the interactions between the rock grains and the
hydrates in the pore space. Myriads of such bonds and interactions define the macroscopic
rock strength parameters. We expect that the history or hydrate formation has a great im-
pact on the character of hydrate distribution and, consequently, on the possible scenarios of
failure of a hydrate-bearing rock.

Here we formulate a model of the macroscopic response of a deforming rock mass to the
microscopic forces and displacements. Our model does not yet include the effects of hydrate
dissociation, but the model’s microscopic nature provides a robust framework to include these
effects in the future.

Here we present the mechanical problem of deformation of granular media. We are in-
terested in describing the macroscopic behavior of a rock mass, in response to, e.g., changes
in applied stress or to imposed displacements. This description will be made based on the
microscopic response of a pack of grains. We are not interested in a detailed description,
such as the shapes of the deformed interfaces, but rather in a more general one, e.g., in the
displacements of the centers of mass due to local deformations. This approach is consistent
with the assumptions used to develop the contact theories which are based on linear elastic
description of the bodies, where the effect of the contact is only felt in a region which is close
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to the contact surface, while the rest of the body experiences a rigid motion.

The approach we are using is discrete elements which are spheres of different radii and
elastic properties. The solid spheres are considered to be elastic, and the deformations are
small. The pack is contained within a semi-rigid box, made of planar surfaces which are
stiffer than the spheres. Note that even when the Hertzian contact is employed (i.e. normal
contact forces only), based on the assumptions of linear elastic bodies in contact, the prob-
lem immediately becomes non-linear due to the non-linear boundary conditions, since the
contact area is a non-linear function of the displacements. In this work the tangential forces
and torsion are also considered.

Equilibrium configuration (described by the location of the centers of mass of the spheres
and their rotations) will be attained when the sums of forces and moments on each sphere
are identically zero, and thus is such that it satisfies a system of equations of the size equal to
the number of degrees of freedom. Assuming that the forces (and the moments produced by
them) are potential, i.e., ignoring slip, the residual forces and moments are the gradient of the
potential energy. Thus, seeking the solution to this problem can be viewed either as solving
a system of algebraic equations or, formulated in a variational setting, as a minimization of
the total potential energy of the pack. In other words, the displacements (linear and angular)
that minimize the potential energy are the ones that correspond to zero residual forces and
moments. Here we will consider two cases:

1. Start from an undeformed pack, where the contacts are formed by the additional loading
(they are singular), and

2. Start from a prestressed configuration, where some stresses and deformations have
already occurred, and the pack is in static equilibrium.

Both cases will be analyzed as static, with inertial effects neglected.

2 Contact Forces, Moments and Elastic Deformations

This section describes the forces, moments and potential energies that result from the relative
deformations of grain bodies. These quantities can be calculated from the kinematics, i.e.,
from the geometry of the pack. This section contains explicit formulae for calculating the
forces, moments and energies that will be used to obtain the equilibrium configuration.

A given 3D configuration includes knowing 6 degrees of freedom that describe the location
and orientation of each sphere in space. From this knowledge, the displacement of each sphere
with respect to its position in the undisturbed configuration can be obtained:

• δri = ri − r0i is the vector of linear displacements of the center with respect to a
fixed coordinate system (mutual to all spheres), where ri is the radius vector from a
fixed origin of a cartesian coordinate system, see Figure 1, and subscript 0 denotes the
initial unperturbed1 configuration. The total relative displacement of sphere i w.r.t. j
is δrij = ri − r0i − (rj − r0j).

1Either undeformed, or prestressed, i.e. before the application of an additional loading/deformation.
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• Ωi is the rotation vector, i.e. rotation of each sphere around its center by a magnitude
Ωi and around an axis in the direction of Ωi (using the right-hand rule).

For a given configuration, from which the relative displacements of sphere i with respect
to each of its neighbors is calculated, the task is to find the forces and moments that act
on each sphere, which are transmitted through the contact regions, and the elastic potential
energy associated with these deformations. Note that if the spheres are not in contact, no
forces/moments are assumed to be acting between them, and since there is no deformation,
no potential energy is associated with the relative displacements. Also note that the displace-
ments are currently restricted to be small enough to comply with the linear elastic theory.
Additional restrictions will enable linearizing the relations and obtaining a system of linear
equations, to be discussed in Section 3.2.

2.1 Hertzian Normal Contact Forces

Hertzian contact theory (Hertz, 1882) assumes that each body can be approximated by an
elastic half-space. This assumption is based on the fact that the contact area is much smaller
than the size of the body and its radius of curvature, and that the deformations are sufficiently
small so that linear small strain theory can be applied. It is observed that the contact stresses
are highly concentrated close to the contact region, and they decrease rapidly in intensity
with the distance from the contact area, so that the domain of influence lies close to the
contact interface. With these assumptions, the following constitutive relation between the
local deformations and the contact force was developed

P ij =

[
4

3
E∗

ij

√

Rijh
3
2
ij

]
rij

||rij ||
(1)

where hij = Ri+Rj−||ri−rj || is the mutual approach, i.e. the decrease2 of distance between
the spheres from the state of initial contact (i.e. at a point). Ri, Ei and νi are the radius, the

Young modulus, and the Poisson ratio of sphere i, respectively, and
1
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ij

=
(1 − ν2

i )

Ei
+
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j )
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and
1

Rij
=

1

Ri
+

1
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. rij = ri − rj is a vector between the center of sphere i to j, which is

the direction of compressive force on i due to the contact with j.

For the case of s grain in contact with a fixed planar boundary (see Figure 1), the force is

P ij =

[
4

3
E∗

ij

√

Rijh
3
2
ij

]

nj (2)

hij = Ri − (ri − xj) · nj, and xj is the radius vector to an arbitrary point on the planar
boundary j. Note that for a planar boundary, Rj → ∞ so that Rij → Ri. Hertzian contact
theory also provides the radius of the contact area as

aij =

(
3PijRij

4E∗
ij

) 1
3

=
√

Rijhij (3)

2Note that Eq. 1 is accounting for compressive force only, thus it is valid for hij ≥ 0 only.
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Since the normal contact forces are the gradient of the potential energy Un
ij of each contact,

P ij = −
∂Uij

∂δrij
, this energy can be derived by integration of the contact force along the relative

displacement (see, e.g. Eq. 9.15 in Landau and Lifshitz, 1986)

Un
ij =

∫ (rij+δrij)

rij

P ij · dr′
ij =

8E∗
ij

√
Rij

15
(hij)

5
2 (4)

2.2 Frictional Contact

Since surfaces are never perfectly smooth, friction will oppose tangential motion between
bodies in contact. This friction will cause tangential stresses/twisting moments to develop
between the bodies, which in turn will cause shear deformations/torsion. To remain within
theory of elasticity we will restrict this discussion to elastic deformations only, i.e. neglecting
slip3 and considering static friction only. Slip will cause energy losses due to friction, and
forces can no longer be considered as potential. The formulae below were originally derived
by Mindlin, 1949.

Singularities of streses/displacements at the edge of the contact area suggest that there
is always some slip occurring (which removes these singularities). Thus, the applicability of
the following formulae will be limited to small increments of forces/displacements applied to
the spheres, as it is seen that the compliance of a pair obtained with the no-slip assumption
is identical with the initial compliance obtained from solutions which account for some slip
(Deresiewicz, 1958). The influence of slip was thoroughly investigated by Mindlin and Dere-
siewicz, 1953.

The no-slip assumption means that the shear stresses should be everywhere smaller than
the limiting friction, which could be determined by, e.g., Amonton’s law of friction (Johnson,
1987). Due to symmetry, it is usually assumed (see, e.g. Mindlin, 1949, Mindlin and Dere-
siewicz, 1953 or Johnson, 1987) that the tangential forces do not have a major influence on
the pressure distribution (and thus on the contact area), i.e., they could still be determined
using Hertzian normal contact. Bodies will move relative to each other, where distant points
(i.e. away from contact area) will have rigid displacements, and points on the contact surface
will deform by elastic displacements. These rigid displacements are equivalent to the rigid
normal displacement considered in developing the normal Hertzian contact theory.

Under the assumption that slip is negligible, and that the tangential stresses do not in-
terfere with the contact area and pressure, the resulting tangential “rigid” displacements are
independent of the position, and thus the sum of overall displacements of two points origi-
nally in contact is constant throughout the contact area. Furthermore, in the case of similar
elastic coefficients, the tangential displacements of such points will be similar in magnitude
and opposite in sign (i.e. relative displacement will split evenly between the two bodies).

3Slip is the relative motion of two points on the opposite sides of the contact interface that were originally
touching each other.
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2.2.1 Tangential Force Due to Relative Tangential Displacements

This section deals with symmetrically distributed tangential stresses that will not cause any
twisting moments, but rather only moments around an axis parallel to the contact area. For
the contact of spherical bodies, using analogy with the development of the normal stresses
leading to a uniform normal displacement (i.e. a rigid punch), the tangential stress distribu-
tion that gives rise to uniform tangential displacement within the contact area is (Mindlin,
1949)

qx(r) = q0(1 − r2/a2)−1/2 (5)

where the x-direction is chosen such that it is the direction of the tangential displacement
(no stresses appear in the perpendicular tangential direction y), a is the radius of the contact
area, and q0 is the tangential stress at the original contact point. Since coupling between
the normal and the tangential tractions and deformations is neglected, the contact area a is
determined from the normal contact, as in Eq. 3. The corresponding displacement at the
interface of sphere i is

uxi = q0a
π(2 − νi)

4Gi
(6)

where Gi is the shear modulus of sphere i (also referred to as the “modulus of rigidity”).
The total relative displacement of two spheres (i.e., the relative rigid displacement between
2 distant points) is δx = ux1 − ux2, and the resultant tangential force Qx = 2πa2q0 acting
on the spheres (equal in magnitude, opposite in sign) can be related to this displacement

as δx =
Qx

8a

(2 − ν1

G1
+

2 − ν2

G2

)
. Denoting the relative tangential displacement vector (in the

x direction) by δ
t(Lin)
ij and the corresponding tangential force vector by Q

(Lin)
ij , the above

formula can be rewritten in vector form as

Q
(Lin)
ij = −8aij

(
2 − νi

Gi
+

2 − νj

Gj

)−1

δ
t(Lin)
ij (7)

where the superscript (Lin) denotes the part which is due to the linear relative displacements.
Another part will be added due to relative rotations. To obtain the relative (with respect to

the contact surface) tangential displacement of sphere i with respect to j, δ
t(Lin)
ij , subtract

the normal component4 of relative displacement

δn
ij =

{ (
δrij ·

r0ij

||r0ij ||

) r0ij

||r0ij ||
for sphere-sphere contact

(δri · nj)nj for contact with boundary
(8)

from the total relative displacement δrij to get the part which is due to linear displacements,

δ
t(Lin)
ij = δrij − δn

ij (9)

The minus sign in Eq. 7 is due to the fact that the tangential force that acts on sphere i,

Q
(Lin)
ij , is opposing the direction of the rigid tangential motion δ

t(Lin)
ij . The anti-symmetry

4The normal component of relative displacement between 2 spheres can be found by the projection along
the original normal direction.
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of i and j in Eq. 7 is expected, since the tangential force that acts on the 2 spheres (from
2 sides of the interface) should be equal in magnitude and opposite in sign. Eq. 7 shows a
linear relation between the tangential displacement and the force. This is different than the
normal loading case, where the nonlinearity is due to the change in contact area with the
pressure. Note that the stress distribution in Eq. 5 leads to infinite tangential stresses at the
edges of the contact area, thus partial slip at the edges is usually considered. This slip is not
accounted for in the current formulation.

2.2.2 Tangential Force Due to Relative Rotation

Relative rotation around an axis which lies in the contact plane (for two spheres it is perpen-
dicular to the line adjoining the centers in the undeformed configuration), will exert tangential
forces on the contact area, which could be estimated by Eq. 7. Note that this is only an
approximation, since the distribution of tractions will be different in the case of pure rotation
around a horizontal axis and relative tangential displacement, even if the tangential force
produced is the same. Moreover, rotation will affect the normal tractions, an effect which is
usually neglected. In the following discussion we will use a relative tangential displacement
which is due to the pure rotation to calculate the resulting tangential force. Note that the
rotation vector is not limited to lie in the contact plane, i.e. torsion could develop at the
interface. This torsion will be discussed in the next section.

Consider a pair of spheres compressed together with a normal force P , where each sphere
is rotating around its center. This rotation is characterized by the rotation vectors Ωi and
Ωj, respectively. Note that for the case of contact with a fixed boundary, Ωj = 0. This
rotation is considered to be rigid everywhere, except for the neighborhood of the contact
areas, where it is assumed that there is no slip (i.e. the tangential traction is everywhere
smaller than the pressure times the limiting friction coefficient). The no-slip assumption
implies that the spheres remain “stuck” together at the contact interface, with a constant
contact area5, so that the tangential displacements of both spheres are uniform and identical
from both sides of the contact area . The relative (with respect to the original contact area)

tangential component of the elastic displacement at the interface δ
t(Rot)
i could be calculated

from the rotation of sphere i, by the cross product

δ
t(Rot)
i

∣
∣
j=fixed

= Ωi × Rij (10)

where the superscript Rot denotes the fact that this tangential component is due to rotation,
and Rij is a vector of magnitude Ri (radius of sphere i) which is directed along the line from
the unperturbed center of sphere i to the original contact point,

Rij =

{

(r0j − r0i)
Ri

Ri+Rj
for sphere-sphere contact

Rinj for contact with boundary
(11)

where nj is a unit vector normal to the boundary j pointing towards sphere i, see Figure
1. The cross-product in Eq. 10 automatically excludes the component of rotation which will
cause torsion (since it is aligned with Rij), and thus one does not need to decompose the
rotation vector into the tangential and normal components with respect to the contact plane
in order to calculate the resulting tangential displacement by Eq. 10. The effect of torsion

5It is further assumed that the contact area and the pressure are unaffected by the tangential stresses.
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will be considered in the next section.

For the case of contact with a fixed boundary, δ
t(Rot)
i is the relative rotation with respect

to that body, denoted by δ
t(Rot)
ij . For the contact of two spheres, one needs to superimpose the

effect of the rotations of the two to obtain the total effect6. Note that even though rotation
vectors are not commutative (except for the case of infinitesimal rotations), it is possible to
calculate the relative linear displacement (the consequence of the relative rigid rotation) of
sphere i with respect to j as

δ
t(Rot)
ij = Ωi × Rij − Ωj × Rji (12)

and obtain the tangential resultant force acting on each sphere using δ
t(Rot)
ij as the tangen-

tial displacement in Eq. 7. To obtain the total tangential displacement δt
ij (due to lin-

ear displacement and rotation), add the two corresponding tangential displacement vectors,

δt
ij = δ

t(Lin)
ij + δ

t(Rot)
ij . In the case of two contacting spheres, this vector is

δt
ij = δrij −

(

δrij ·
r0ij

||r0ij ||

)
r0ij

||r0ij ||
−

1

Ri + Rj

[

(RiΩi + RjΩj) × rij

]

(13)

whereas for the case of contact with a fixed planar boundary, the total vector is

δt
ij = δri − (δri · nj)nj + RiΩi × nj (14)

Using the total tangential displacement in Eq. 7 provides the tangential force due to
relative tangential displacements and rotations,

Qij(δ
t
ij) = −8aij

(
2 − νi

Gi
+

2 − νj

Gj

)−1

δt
ij (15)

2.2.3 Elastic Potential Energy of Tangential Deformations

The elastic potential energy related to the deformations described above can be found by
integrating the resultant force over the displacement in the direction of that force (dot product
of the force vector and the displacement vector)7, i.e. for a tangential force Q which causes
a displacement of δt(Rot) the associated potential energy would be

U t(Lin)(δt(Lin)) =

∫ δt(Lin)

0
Qt(Lin)(δt(Lin))dδt(Lin) (16)

The potential energy associated with the relative rotation Ω could be computed in a
similar way8, i.e., the tangential force as a function of rotation is integrated over the linear
displacement which results from the rotation

6Summing the displacements and obtaining the force is identical to summing the two forces resulting from
each rotation of a single sphere keeping the other fixed.

7In the one dimensional case, the energy is U(x′) = −
R x

0
F (x′)dx′. In Eq. 16 the minus sign is omitted

since the force in the original expression is the force exerted by the elastic deformation, while the force in the
above equation is the force required to cause that deformation.

8It is identical to integrating the moment along the rotation angle, as M = QR and Ω = δt/R where R is
the sphere radius.
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U t(Rot)(Ω) =

∫ Ω

0
M(Ω)dΩ =

∫ δt(Rot)(Ω)

0
Qt(Rot)(δt(Rot)(Ω))dδt(Rot)(Ω) (17)

The potential energy associated with both deformations is thus

U t
ij(ri, rj ,Ωi,Ωj) = 4aij

(
2 − νi

Gi
+

2 − νj

Gj

)−1

(δt
ij)

2 (18)

where δt
ij is the magnitude of the relative tangential displacement vector between the spheres,

due to both linear and angular displacements, thus it is a function of ri, rj,Ωi,Ωj . Note that
because of the presence of the contact area a, this energy is also an explicit function of the
normal component, which in turn is a function of ri and rj. Note that Eq. 18 holds only in
the case of contact between the spheres, since U t

ij must vanish otherwise, even though δt
(ij)

might be nonzero.

2.2.4 Torsional Elastic Deformations and Twisting Moments

Rotation around an axis along the line connecting the centers will cause a twisting moment,
which will induce torsional deformation. Similarly to our handling of tangential stress, it is
assumed that the bodies rotate rigidly everywhere except for the neighborhood of the con-
tact areas, where elastic deformation is assumed. Since it is assumed that there is no slip,
and that no normal traction component or distortion in the contact plane results from this
rotation (Mindlin, 1949 and Deresiewicz, 1958), these moments will induce only torsional
deformations.

Considering a pair of identical spheres with similar elastic properties, assuming no slip,
the torsional compliance that relates the moment to the rotation angle in the case of twisting
couple of magnitude M tor

ij is (Mindlin, 1949)

M tor
ij =

8

3
Ga3

ijΩ
tor
ij (19)

where Ωtor
ij is the relative rotation of the two bodies in a direction normal to the contact

surface, denoted by superscript tor. The direction of the moment can be easily found from
the requirement that the moment opposes the direction of rotation. To obtain the relative
rotation, we will use the fact that we will eventually deal with the incremental formulation
(restricted to small deformations). Considering infinitesimal rotation of the spheres around
their centers, Ωi, the component of rotation of each sphere around an axis which is perpen-
dicular to the contact surface would be Ωtor

i

∣
∣
j=fixed

= (Ωi ·Rij)Rij . For contact with another

sphere, the rotation of that sphere around the same axis is Ωtor
j

∣
∣
i=fixed

= (Ωj ·Rij)Rij. Since

these rotations are around the same (parallel) axis, the relative rotation of i with respect to
j is obtained by taking the difference, as

Ωtor
ij = Ωtor

i − Ωtor
j = [(Ωi −Ωj) · r0ij)]r0ij (20)

where for contact with a fixed plane, Ωtor
ij = Ωtor

i

∣
∣
j=fixed

. For the case of non-uniform elastic

properties, the relation in Eq. 19 will transform into (Johnson, 1987)
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M tor
ij = −

16

3
a3

ij

(
1

Gi
+

1

Gj

)−1

Ωtor
ij (21)

where M tor
ij is the moment applied on sphere i by sphere j due to a relative rotation of Ωtor

ij .
The energy associated with the torsion, calculated as the integral of the moment along the
rotation angle, is

U tor
ij =

8

3
a3

ij

(
1

Gi
+

1

Gj

)−1

(Ωtor
ij )2 (22)

where Ωtor
ij is the magnitude of the relative tangential displacement between the spheres.

As in the case of tangential displacements, singularities at the edge of the contact area
suggest that some slip in a circumferential direction takes place over an annular area. This
limits the use of Eq. 21 and Eq. 22 to cases of large limiting friction relative to the actual
stresses developed in the contact area. Intuitively, the stresses produced by this motion would
be smaller compared with those created by tangential displacements and rotation around
horizontal axis; however, twisting has a very important role in determining the strength of
contact (Hills, 1986), and should be considered carefully when failure is involved.

2.2.5 Moments

While the normal resultant force induced at the contacts acts along the line connecting the
centers, and thus does not apply a moment9, the tangential forces (Eq. 15) will. Since
the deformations are considered to be small, the tangential forces at the contacts could be
considered as acting on the original contact point (before perturbation applied). Thus the
arm from sphere i center to the contact is described by Rij . The moments are calculated by
the cross product of the arm and the force, so that the moment acting on sphere i is produced
by the tangential force Qij is10

M t
ij = Rij × Qij (23)

Note that this moment is a function of both linear tangential displacements and rotations
around an axis parallel to the contact plane. Upon inserting the explicit expression for
Rij, and for Qij as a function of δt

ij, using the vector triple product A × (B × C) =
B(A · C) − C(A · B), and the fact that cross products of parallel vectors will vanish, the
resulting equation could be simplified to,

M t
ij = −8aij

(
2 − νi

Gi
+

2 − νj

Gj

)−1 Ri

Ri + Rj

{

− r0ij × δrij

+
1

Ri + Rj

(

||r0ij ||
2(RiΩi + RjΩj) − (r0ij)

[
r0ij · (RiΩi + RjΩj)

]
)} (24)

9Assuming small deformations so that bodies remain spherical, the center of mass remains at the sphere
center.

10Note that the force is perpendicular to the arm, so that the magnitude of the moment is simply Ri||Qij ||.
The vectorial notation is needed though for determining the direction of the moment.
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for the case of sphere-sphere contact, and to

M t
ij = −8aij

(
2 − νi

Gi
+

2 − νj

Gj

)−1

Ri

[

nj × δri + RiΩi − nj

(
nj · RiΩi

)]

(25)

for the case of sphere-wall contact. Note that M t
ij in Eq. 24/Eq. 25 calculated with respect

to the center of the sphere, so the sum of moments on each sphere with respect to its center,
due to tangential loading, is simply summation of all those moment vectors. The total sum
of moments should include the torsional moments (which is a function of relative rotations
around an axis perpendicular to the contact plane),

M i =

N i
c∑

j=1

[

M t
ij + M tor

ij

]

(26)

where there are N i
c contacts for sphere i. This sum should be used as the residual moment

of each sphere, which in turn will be used to find the displacements which will minimize the
energies. Both the residual force and moment acting on each sphere could be used to estimate
the deviation from the equilibrium, e.g. by summing the square of the norms of these vectors.

3 Using Minimization of Energy to Obtain Equilibrium

The elastic potential energy associated with the elastic deformations is the sum of the energies
which are due to the normal and tangential displacements (including the rotation parallel
to the contact area), and the torsion. These energies are a function of the relative linear
displacements and rotations. Equilibrium configuration is obtained when the following two
quantities vanish on each sphere: (a) the sum of forces; (b) the sum of moments. To use
the potential energy to obtain equilibrium configuration, we will minimize a functional which
includes the sum of energies from all normal and tangential relative displacements, as well as
those that are associated with the relative rotation of the spheres. Note that on top of the
energies associated with the internal forces/moments, one needs to take in to account those
which are associated with the external forces,

Π(rk
1 , r

k
2 , ..., r

k
NN ,Ωk

1,Ω
k
2 , ...,Ω

k
NN ) =

1

2

Ncs∑

ij=1

[
Un

ij + U t
ij + U tor

ij

]k

+

Ncw∑

ij=1

[
Un

ij + U t
ij + U tor

ij

]k
−

N∑

i=1

F k
i,ext · δ

k
i

(27)

where k is the iteration index, ij denotes the contact between sphere i and other spheres/bound-
aries j (Ncs such sphere-sphere contacts, Ncw sphere-boundary contacts), F k

i,ext is the external

force applied11 (total of N spheres), and δl is the displacement vector of sphere i. The en-
ergies are associated with a single contact, thus the total potential energy is the sum of the
energies over all contacts. The 1/2 factor comes from the fact that summing over all contact
of all spheres will result in including each sphere-sphere contact twice. Minimizing Π with
respect to all the displacement components (rk

1 , r
k
2 , ..., r

k
NN ,Ωk

1,Ω
k
2 , ...,Ω

k
NN ) is equivalent to

11We exclude here loading in the form of applied moments, which can be easily added.
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solving the set of equations (N × 6 for the 3D case, if all spheres have 6 degrees of freedom),
which are sum of forces and sum of moments (vectorial equations) equal to zero.

An important observation is that for the normal components the relative displacement
from the undeformed configuration can be calculated without knowledge of that configura-
tion, while this is not the case for the tangential and rotational components. Thus, unlike the
normal contact forces, where their magnitudes (and thus the energy associated with them
Un

ij) are known for every configuration, the tangential forces and their associated energy U t
ij

are not known in the undisturbed configuration, unless the undeformed configuration is also
known. The fact that the energy is related to tangential displacement, which is not known
poses a problem since some deformations could occur in a direction which reduces the energy,
i.e., in a reverse direction to the initial tangential displacement. Without prior knowledge,
any deformations will be considered to increase energy12. For the time being, we will ignore
this problem and consider minimization of the increment of energy from the undisturbed
initial state, and not of the total energy.

3.1 Incremental Formulation

The case of deformations of a prestressed pack is different than the case of deforming an
undeformed pack. We now address the problem of a prestressed pack, where one needs to
determine a new equilibrium configuration (displacements) starting from some other equi-
librium (hereby refereed to as “undisturbed” or “prestressed”), after a small perturbation
has been introduced. To obtain the new equilibrium configuration, we will first consider
an infinitesimal13 perturbation, so that the resulting displacements are infinitesimal as well.
Resorting to the incremental formulation allow us to use linear constitutive relations, which
will improve the numerical scheme convergence14 . The equilibrium configuration associated
with the new perturbation will be found by minimizing the change in energy from its initial
equilibrium state.

Applying a sequence of such incremental changes and integrating provides an equilibrium
configuration associated with the final finite change15. Even though at the undisturbed con-
figuration the tangential forces (and thus moments) are unknown, by definition, the sum of
forces and moments on each grain is zero, so we will consider only the increments of forces and
moments as the residuals (which will be used to minimize the incremental energy). Thus, the
residuals should be calculated as sum of forces/moments in excess of those in the undisturbed
configuration. This approach provides the deviation from equilibrium, since the undisturbed
configuration is at equilibrium, i.e. residuals are identically zero. Note that if the tangential
forces in the undisturbed configuration were known, one could calculate the sum total forces
as the residuals. But, since the tangential forces are not known, summing the total forces
would lead to erroneous residuals.

12This means that the U t
ij could only increase from that configuration.

13Infinitesimal in this context means that it is small enough for the linear theory to apply within certain
accuracy.

14This is of great advantage when using conjugate gradient methods, which were originally developed for
systems of linear equations.

15Note that it may be that some other equilibrium configuration with lower energy may be attained by
applying the change at once, i.e. the solution might not be unique.
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3.2 Linearizing the Relations

In this section we linearize the non-linear relations which are needed to calculate the forces and
energies with respect to the parameters rk

1 , r
k
2 , ..., r

k
NN ,Ωk

1,Ω
k
2 , ...,Ω

k
NN

16. The linearization
is done by expansion of the functions (forces, moments, energies) around a reference value,
which is for zero relative displacements with respect to the prestressed configuration, drop-
ping all the terms of higher order than linear. Note that there are deformation and thus
contact forces in that configuration.

This procedure is sensible only for a prestressed configuration, where for all contacts the
contact area is assumed to be far enough from being singular, i.e., a set of points. How-
ever, since a granular medium contains multiple contacts, some of those might be closer to
the singular limit, and thus lose contact with a small incremental change. In that case, the
values of forces, moments and potential energies associated with those particular contacts
should be identically zero, and not calculated using the linear formulae. For the case of new
contacts which are due to the incremental change, the values should be calculated using the
full nonlinear formulation, as in Section 2. Note that intuitively one can expect this situation
to be uncommon, and if it will only happen with very few contacts the overall effect on the
calculations might be small.

Starting with the normal components, it is necessary to linearize the forces and energy
with respect to the position vectors. Noting that rotation vector does not affect the normal
components, the force will be expressed as a linear function of the displacements. Note
that both the direction and the magnitude of the force vector in Eq. 1 depends on the
displacement, so both will be linearized by

P ij(δrij) ≈ P 0ij + δPij = P 0ij + ▽P ij

∣
∣
δrij=0

· δrij (28)

where P 0ij is obtained by using the undisturbed geometry, i.e., r0ij in Eq. 1, and the gradient

is defined by ▽P ij

∣
∣
δrij=0

=
∂P0ij

∂δrij

∣
∣
δrij=0

. For a sphere-sphere contact, this gradient is given

by

▽P ij

∣
∣
δrij=0

=
4

3
E∗

ij

√

Rij

{

h
3
2
0ij

||r0ij ||
1 −

√
h0ij

||r0ij ||3

(
3

2
||r0ij || + h0ij

)

(r0ij ⊗ r0ij)

}

(29)

where 1 is the unit tensor, i.e., the second order diagonal tensor with 1 along the diagonal,
and h0ij = Ri + Rj − ||r0i − r0j || is the undisturbed mutual approach. The dot product of
this expression with δrij (see Eq. 28) provides the linear increment in force,

δPij =
4

3
E∗

ij

√

Rij

{

h
3
2
0ij

||r0ij ||
δrij −

√
h0ij

||r0ij ||3

(
3

2
||r0ij || + h0ij

)

(r0ij · δrij)r0ij

}

(30)

For a contact between a sphere and a fixed boundary, noting that the mutual approach
is already linear with respect to the displacement of the sphere (see Eq. 2), and that the

16Since ri = r0i + δri , it will also be linear with respect to the displacements
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direction of the vector is fixed (it is the normal to the planar boundary), the increment in
force simplifies to

δPij = −2E∗
ij

√

Rijh0ij(nj · δri)nj (31)

To obtain a quadratic form (with respect to the displacements) for the change in Un
ij , it

will be calculated by integrating the linear force (Eq. 28) along the relative displacement (see
Eq. 4)

δUn
ij =

∫ (rij+δrij)

rij

(P 0ij + δPij) · dr′
ij (32)

The integration could be simplified upon parameterizing the displacements as δrij(s) =
sδrij where s is a scalar which varies form 0 to 1, such that s = 0 and s = 1 are the initial
(prestressed) and disturbed configuration, respectively. With this, the integration is done
over dr′

ij = sδrijds, where only δrij is a function of s within that integral. Taking out the
constant parts and integrating over s from 0 to 1, get

δUn
ij = (P 0ij +

1

2
δPij) · δrij (33)

Note that since δPij is linear with δrij , the second term in Eq. 33 is quadratic. The
first term is linear with it, so the energy can be reduced (when the distance between the
bodies is decreasing). This situation is different than the case of the energies that are due
to other deformations, where the single quadratic term implies that the energy could only
increase from the prestressed deformation. This is not true in the case of displacements in a
direction opposite to the the initial ones (i.e. from the undeformed configuration), unless the
tangential stresses dissipate and do not exist in the prestressed pack. This is a reasonable
assumption for geological media which is formed over long periods, and consolidates long after.

The tangential force is already linear with respect to the relative tangential displacement
δt
ij , which in turn is linear with the linear and angular displacements. Nevertheless, the

contact area a which appears in Eq. 15 is nonlinear with the linear displacement, so it could
also be linearized as

aij ≈
√

Rijh0ij
︸ ︷︷ ︸

a0ij

+
1

2

√

Rij

h0ij
δhij (34)

However, since the second term in Eq. 34 is of higher order, the product of it with the
incremental relative displacement δt(ij) can be neglected in the linear approximation. Thus,
the contact area will be considered to be constant, equal to its value in the prestressed con-
figuration, a0ij , i.e. decouples the effect of the normal stresses on the tangential ones.

With this simplification, the forces, moments and energies which are associated with the
tangential displacements and rotations are linear with respect to the relative disbarments
(linear and rotational). With linear relationships between the tangential forces/twisting
moments and the tangential displacement and rotations, the energy associated with those
deformations will be quadratic with respect to them, see Eq. 18. Keep in mind that the
calculated U t

ij (e.g. in Eq. 18) is the increment of energy, ignoring amount stored in the
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undisturbed configuration. This increment will therefore be denoted by ∆U t
ij.
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4 Appendix: Numerical Schemes

In this section, a brief overview of the methods used to solve for the equilibrium configuration
is presented, together with a note on the implementation of these methods. The simplest
method which is presented in the steepest descent, while the method chosen was the con-
jugate gradient, which has proven to converge within finite number of iterations for linear
systems.

4.1 Steepest Descent Method

The starting point of iteration is an initial configuration, guessing the linear and rotational
displacements with respect to the undisturbed equilibrium state. For example, one could take
the undisturbed configuration, i.e., zero displacements, as the initial guess. For the current it-
eration (configuration = linear displacements/rotations), calculate the corresponding relative
displacements. These relative displacements enable (see Section 2) the calculation of normal
and tangential forces, moments and energies associated with the relative displacements. The
sum of forces and sum of moments are the residuals, which will be identically zero at the
equilibrium configuration.

Minimizing the energy is done by displacing the spheres in the anti-direction of the resid-
uals, i.e., linear displacements of αk

lin times the residual force of each sphere, and angular
displacements of αk

rot times the corresponding residual moment, where the units of these co-
efficients differ from one another, to make the units consistent. Finding these two coefficients
is a problem of minimization of a function (Π) with respect to two variables (αk

lin and αk
rot),

which would be an excessive complication compared to using a single coefficient.

To use a single coefficient, one needs to make sure that the units and scales of the param-
eters updated by that coefficient are similar. Consider a coefficient that is relating the linear
displacements (units of length [L]) and residual forces, i.e. it should be in units of [L]/[F].
Relating the rotation (dimensionless) to the moments, one needs a coefficient which has units
of 1/([F][L]). Assuming that the tangential and normal forces are of the same order, since
the moments are the sum of tangential forces times the sphere radius Ri, the moments are
about Ri larger than the sum of forces. On the other hand, the linear displacements should
be of order of rotations times Ri. To obtain a similar order, we consider the variables to be
the linear displacements δi and the arc length vector RiΩi, and in addition we update the
arc length variable by the sum of moments times the coefficient divided by Ri,

δk+1
i = δk

i − αkfk
i

RiΩ
k+1
i = RiΩ

k
i −

αk

Ri
Mk

i

(35)

4.2 Conjugate Gradient Method

The classical conjugate gradient method was developed for numerical solution of one of two
equivalent problems: a system of linear equations

Ax = b (36)
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or minimization of a quadratic criterion

J(x) =
1

2
Ax · x− b · x (37)

Here b is a known column-vector of dimension N , and A is a symmetric positive-definite
N × N matrix. The gradient J ′(x) of J(x) is

J ′(x) = Ax − b (38)

Hence, Equation Eq. 36 is equivalent to J ′(x) = 0. The solution x∗ to system Eq. 36 is the
minimum of function Eq. 37, and vice versa.

Conjugate gradients method is an iterative procedure where starting from some x0, a step
from xn (n is the iteration index) to xn+1 is performed by the following formula

xn+1 = xn − αnpn (39)

The step-size coefficient17 αn is selected to minimize J(xn − αnpn) (the potential energy in
this case) for a given xn and pn. At the minimum,

d

dα
J(xn − αpn)

∣
∣
∣
∣
α=αn

= (A(xn − αnpn) − b) · pn = (Axn+1 − b) · pn = 0 (40)

Therefore,

αn =
rn · pn

Apn · pn
(41)

where

rn = Axn − b (42)

is the gradient of the energy in this case, as defined in Eq. 38. Note that Eq. 39 and Eq. 40
imply that

rn+1 · pn = 0 (43)

Also, from Eq. 39

−αnApn = Axn+1 − Axn = (Axn+1 − b) − (Axn − b) = rn+1 − rn (44)

hence

Apn =
1

αn
(rn − rn+1) =

1

αn
(J ′(xn) − J ′(xn+1)) (45)

Since x∗ is the solution to the system Ax = b, Eq. 40 implies

(Ax∗ − b) · pn = 0 (46)

Thus far, all calculations are valid for an arbitrary choice of vectors pn. Let the vector,
p0, be the gradient of the criterion Eq. 37 at some initial guess x = x0:

17One could possibly choose it to be different for each sphere, making it a vector and not a scalar. Selection
of α in the case of a scalar, reduces to a minimization problem of a function of one variable, which is easily
solved by methods such as the golden section.
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p0 = Ax0 − b = J ′(x0) (47)

Note that due to Eq. 42,
p0 = r0 (48)

Clearly, vector −p0 points in the direction of fastest rate of decay of the criterion Eq. 37.
Thus, from Eq. 43,

r0 · r1 = J ′(x0) · J
′(x1) = 0 (49)

Eq. 46 and Eq. 40 at n = 0, in particular, implies that both x1 and x∗ are in the same
plane orthogonal to p0. Therefore, one can constrain further iterations to this plane only.
This means that we select a direction p1, which is orthogonal to p0. To do so, we put p1

equal to a projection, in some sense, of the gradient of function Eq. 37 on this plane. namely,
we subtract from the gradient p0 with an appropriate coefficient β1. So, put

p1 = J ′(x1) − β1p0 (50)

Or, equivalently,
p1 = (Ax1 − b) − β1p0 = r1 − β1p0 (51)

The dot product Ap1 · p0 must vanish,

Ap1 · p0 = 0 (52)

Hence,

β1 =
Ar1 · p0

Ap0 · p0
=

(Ax1 − b) · Ap0

Ap0 · p0
(53)

The coefficient β1 has been chosen in such a way that for any coefficient α, the vector x1−αp1

is in the same plane defined by Eq. 46 at n = 0:

(A(x1 − αp1) − b) · p0 = 0 (54)

After some algebra, it can be shown that for i, j not exceeding 2, we have

Api · pj = 0, i 6= j (55)

ri · rj = 0, i 6= j (56)

and
ri · pj = 0, i > j (57)

A general step of the algorithm is as follows: After xi and pi have been computed for
i = 0, 1, . . . , n along with the coefficients αi and βi for i < n, relationships Eq. 55–Eq. 57
hold true for appropriate i, j not exceeding n. The next iteration xn+1 is computed using
Eq. 39 and Eq. 41. Next direction is computed using

pn+1 = rn+1 − βn+1pn (58)

where βn+1 is selected to provide for

Apn+1 · pn = 0 (59)
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That is,

βn+1 =
Arn+1 · pn

Apn · pn
(60)

Using relationships Eq. 55–Eq. 57, the latter equation can be modified:

βn+1 =
rn+1 · (rn − rn+1)

(rn − rn+1) · pn
= −

rn+1 · rn+1

rn · pn
= −

rn+1 · rn+1

rn · (rn − βnpn−1)
= −

rn+1 · rn+1

rn · rn
(61)

By virtue of Eq. 38,

βn+1 =
(J ′(xn+1) − J ′(xn)) · J ′(xn+1)

(J ′(xn+1) − J ′(xn)) · pn
= −

||J ′(xn+1)||
2

||J ′(xn)||2
(62)

4.2.1 Implementation of Conjugate Gradient for Granular Media

In cases where J(x) is an arbitrary function (i.e. not quadratic), as in the current case (the
energy is related to the displacement with a power of 5/2), the conjugate gradient algorithm
can be applied for its minimization in the following way. After picking an initial guess, the
first step is done using the steepest descent method, Eq. 47. In this case, we choose the
initial guess for the first iteration to be the undeformed configuration.

The next iterations are performed by the same scheme, selecting αn by the steepest de-
scent method, and computing βn+1 using the rightmost expression in Eq. 60. The algorithm
may not work in the same manner as it works for minimization of a quadratic criterion. For
example, after sufficiently many iterations, the direction pn+1 computed by Eq. 58 may point
not in a direction of decay of function J(x). In such a case, one can refresh the procedure
by enforcing βn+1 = 0 (i.e. performing a steepest descent step). The frequency of such an
operation can be determined empirically. Note that if the conjugate gradients algorithm is
restarted at every iteration, it becomes equivalent to the steepest descent method.
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Figure 1: Relative displacements of two spheres in contact.
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