

Transformational Molecular Layer Deposition Tailor-made Size-Sieving Sorbents for Postcombustion CO₂ Capture

DOE Award No.: DE-FE0031730

Miao Yu and Patrick Underhill, *Rensselaer Polytechnic Institute (RPI)* Shiguang Li, *Gas technology Institute (GTI)* James Ritter, *University of South Carolina (USC)* Andrew Sexton, *Trimeric Corporation (Trimeric) Frank Morton, National Carbon Capture Center (NCCC)*

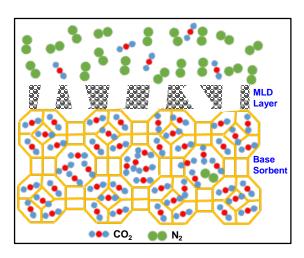
2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 29, 2019

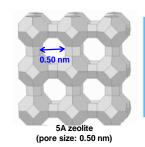
Project Overview

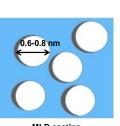
- Performance period: Oct. 1, 2019 Sep. 30, 2022
- **Funding**: \$3,000,000 from DOE; \$759,206 cost share
- Objectives:

Develop a transformational (T) molecular layer deposition (MLD) tailor-made size-sieving sorbent (S) integrated with a tailored PSA cycle schedule (designated as MLD-T-S/PSA process) that can be installed in new or retrofitted into existing pulverized coal (PC) power plants for CO_2 capture with a cost of electricity at least 30% lower than a supercritical PC with CO_2 capture, or approximately \$30 per tonne of CO_2 captured, and with it being ready for demonstration by 2030.

Project participants:

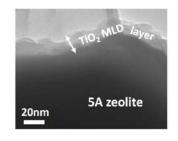


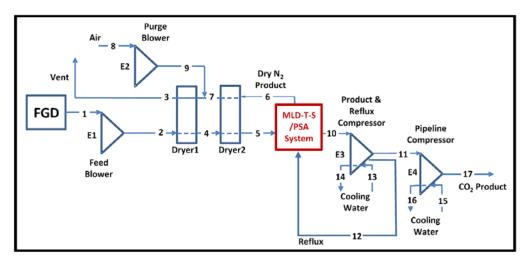




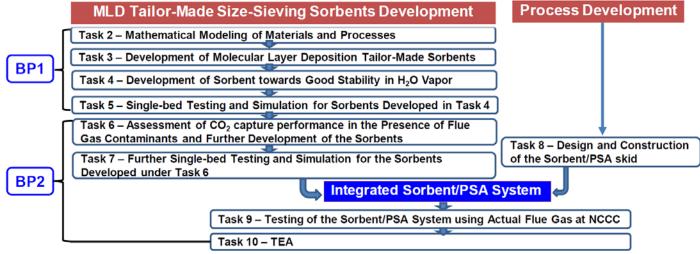
Technology background

MLD-T-S for molecular sieving




MLD coating (pore size: 0.6-0.8 nm) Pore misalignment

30-cycle MLD coated 5A (pore mouth size: 0.485 nm due to pore misalignment)


Adsorbents	Adsorption capacity (mmol/g)		CO ₂ /N ₂ ideal selectivity
	CO ₂	N_2	scientity
5A zeolite	1.0	0.15	35
5A-MLD-250-2h	0.97	0.036	130
5A-MLD-250-4h	0.55	0.028	98
5A-MLD-250-8h	1.0	0.11	46

USC's unique PSA process flow sheet from FGD through CO₂ compression

Technical Approach/Project Scope

Experimental design and work plan

Key milestones and success criteria

BP1: Achieve performance targets for the MLD tailed-made sorbents and achieve baseline PSA *Success criteria*: i) MLD tailor-made sorbent showed CO_2/N_2 selectivity ≥ 130 with simulated flue gas containing water; the measured heat of adsorption for CO_2 is < 35 kJ/mol; ii) 1-Bed PSA testing with MLD T-S and follow-on DAPS simulation validated that the required beds can be reduced to ≤ 48 for a 550 MWe (net) power plant.

BP2: <u>Achieve 95% CO₂ purity and 90% CO₂ recovery with the MLD-T-S/PSA skid for actual flue</u> gases at National Carbon Capture Center (NCCC) and validate DOE cost goal.

Success criteria: i) Sorbent/PSA skid testing at NCCC using flue gas complete, 70-90% CO_2 removal rate achieved, 95% CO_2 purity validated, and sorbent shows good stability during a 200-h continuous testing; ii) Final TEA report issued. DOE cost goal (cost of electricity 30% less than baseline CO_2 capture approach Case B12B, or approximately \$30 per tonne of CO_2 captured) validated.