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Motivation for Research
Microseismic monitoring is the most common fracture diagnostic method in use

today. It tracks shear failure events associated with the opening of the main
fracture.

Micro-seismic events do not reflect the propped fracture length nor do they
inform us about the spatial distribution of proppant.

 Shear failure events that generate microseisms are often associated with
regions of the reservoir that have no propped conductivity.

 It would be very useful to have a single well, far field method that measures the
propped fracture length, orientation and proppant distribution in the fracture
after hydraulic fracturing.
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The primary objective of the project is to build and test a prototype 
downhole fracture diagnostic tool that can be used to estimate the 
orientation and length of the ‘propped’ fracture and to map the 
distribution of proppant in the fracture.

Specifically, our objectives are to:
• Develop a forward model for the proposed technology taking into account real 

geological and reservoir constraints.
• Test proppants in the laboratory for electrical and material properties for their 

suitability in deployment in the field.
• Design, build and test a prototype low frequency electromagnetic tool.
• Invert the field data to estimate the propped fracture geometry, and present a 

map showing the distribution of proppant in the fracture.

3

Project Objectives



• Transform a hydraulic fracture into a highly conductive 
plane using conductive proppants

• Use a logging tool (with downhole sources and receivers) (a)

(b)

Transmitter

Receivers

fracture filled with 
electrically 

conductive proppant

electromagnetic 
waves

The Basic Idea
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 Are inexpensive conductive proppants available? 

 How far can we image the proppant in the fracture? 

 Is the signal to noise ratio sufficient to provide us with a 
reliable measurement?

 Can the measured signal be inverted to provide fracture 
dimensions and orientation?

Key Questions
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• The proposed technology is a potential game changer for fracture 
diagnostics as it provides information on the proppant distribution in 
the fracture, information that is currently not available to operators.

• It is less expensive, simpler to run and provides more direct 
information about the propped fracture than other far field 
diagnostic methods such as micro-seismic monitoring. 

• It is anticipated that the technology will be widely used by operators 
to better understand where the proppant has been placed.

Project Impacts

6



Periodic, Topical and Final reports are being submitted in accordance with the “Federal Assistance Reporting 
Checklist” and the instructions accompanying the checklist. In addition the specific deliverables for each Task are 
listed below.

Task 1: Project Management Plan
1. A Project Management Plan.

Tasks 2-4: Development and Construction of Prototype Tool and Proppant Selection
1. A Topical Report outlining the results of the main simulations of the forward model and sensitivity 

analysis performed, the laboratory test results of proppant  testing, and design of EM tool.
2. Test results that allow us to select a suitable electrically conductive proppant.
3. Design of a prototype electromagnetic tool. This will include the basic drawings and specifications of the 

tool.

Tasks 5: Testing of Prototype Tool
1. A Report outlining the results and the main conclusions of the trial.

Tasks 6: Data Inversion
1. Final Report.
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Key Deliverables / Expected Outcomes



• Task 1.0 – Project Management Plan 
• Task 2.0 – Development of forward model for the proposed tool and 

different fracture geometries
• Task 3.0 – Lab testing of available proppants in the market for electrical 

and material properties
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of prototype tool
• Task 6.0 – Inverting data to obtain the fracture geometry
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EM Induction Logging Tool
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EM Induction Logging Tool
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More details on the Volume Integral Equations EM forward-modeling:
[1] P. Zhang, J. Shiriyev, Y. Brick, J. Massey, C. Torres-Verdin, A. E. Yılmaz, and M. M. Sharma, “Fracture diagnostics using a low frequency 
electromagnetic induction method,” in Proc. ARMA, June 2016
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* Simplest 
coil model

* reference: 
current source 
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Numerical Simulation – VIE
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Maxwell Equations:
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Numerical Simulation – SIE/IBC



−�𝑛𝑛 × �𝑛𝑛 × 𝐄𝐄sca −
𝐉𝐉
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𝐙𝐙𝐙𝐙 = 𝐕𝐕inc

and

• Once unknown coefficient vector is found, scattered fields are calculated for two 
observation points.

• This procedure is repeated for each tool position and only incident field vector is 
regenerated.

• S-EFIE constrain unknowns to only currents on anomalous regions.
• No artificial/approximate boundary conditions are required.
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Numerical Simulation – SIE/IBC

More details on the Surface Integral Equations EM forward-modeling can be found on the appendix of:
[2] J. Shiriyev, Y. Brick, P. Zhang, A.E. Yilmaz, C. Torres-Verdin, M.M. Sharma, T. Hosbach, M.A. Oerkfitz, and J. Gabelmann, “Experiments and simulations of 
a prototype tri-axial electromagnetic induction logging tool for open-hole hydraulic fracture diagnostics”, Geophysics, 2018



• Task 1.0 – Project Management Plan 
• Task 2.0 – Development of forward model using proposed tool and 

different fracture geometries
• Task 3.0 – Testing of available proppants in the market for electrical 

and material properties (Peng Zhang, Rod Russell, and Mukul Sharma)
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of prototype tool
• Task 6.0 – Inverting data to obtain the fracture geometry
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Tasks



• A 4-point probes method was 
used to do the measurements in a 
core holder.

• Alternating current (AC) was 
applied on the current-
carrying electrodes, while the 
voltage was measured on 
the voltage-sensing electrodes.

• Confining pressure can be applied. 
Saturation fluid could be tuned.
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Experimental Method for Resistivity 
Measurements



• 0% sand + 100% coke

• 25% sand + 75% coke

• 50% sand + 50% coke

• 75% sand + 25% coke

The ratio is based on mass.

1.5’

2’

4 mm
~3 mm

Before measurement After measurement

Size: 40-70 mesh & 70-100 mesh
Coke Density: ~2 g/cm3
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Experimental Method for Resistivity 
Measurements



0% sand 1.99 × 10−4 Ω � 𝑚𝑚
@4000 psi

25% sand 3.64 × 10−4 Ω � 𝑚𝑚
@3000 psi

50% sand 6.28 × 10−4 Ω � 𝑚𝑚
@4000 psi

50% sand 
(sea 

water)

5.06 × 10−4 Ω � 𝑚𝑚
@5000 psi

17

Electrical Resistivity: 40/70 mesh



0% sand 2.12 × 10−4 Ω � 𝑚𝑚
@4600 psi

25% sand 2.64 × 10−4 Ω � 𝑚𝑚
@5000 psi

50% sand 5.73 × 10−4 Ω � 𝑚𝑚
@5000 psi

All with sea water
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Electrical Resistivity: 70/100 mesh



• A Berea sandstone core of 1’’ diameter by 8’’ length was
prepared with a fracture width of 1mm.

• The core was placed inside a Hassler sleeve core holder
and evacuated to remove trapped air.

• Confining closure stress was applied for 24 hours, after
which 3% brine solution was pumped through the core at a
range of constant flow rates.

• For each closure stress applied, the pressure drop across
the core was measured and used to calculate the fracture
conductivity using Darcy’s Law.

• This procedure was repeated for incremental closure
stresses from 1000 – 8000 psi.
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Experimental Method for Fracture 
Conductivity Measurements
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Fracture Conductivity and Normalized 
Conductivity – Sand and Coke: 40/70 mesh

FCD = ⁄kfwf Lfk = 5 / 250E−4
FCD = 200
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Productivity Index: Fractured Vertical Wells

(Friehauf and Sharma, 2009)



Summary of Lab Measurements
• The electric resistivity of the PC, under confining stress, was

measured to be in the range of 2 x 10-4Ω � 𝑚𝑚
• Size does not affect the electrical resistivity but does affect the

permeability.
• It is feasible to use mixtures of sand and PC if fracture conductivity is

a concern (large in-situ stresses).
• Both resistivity and permeability increase with increasing mass

percentage of sand at a given confining pressure.
• Brine has a minor effect on the measured resistivity because it is

usually much more resistive (~0.2 Ω � 𝑚𝑚) than petroleum coke.
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• Task 1.0 – Project Management Plan 
• Task 2.0 – Development of forward model for the proposed tool and 

different fracture geometries
• Task 3.0 – Lab testing of available proppants in the market for electrical 

and material properties
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of prototype tool
• Task 6.0 – Inverting data to obtain the fracture geometry
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Tasks



Axial TX coil on winding fixture with ferrite core to the side

Tank circuit, transmit coil with capacitor board on the right

Co-planar coil after construction

0.42 m

0.1 m

0.15 m

0.32 m

TOOL BACKBONE
(3" PVC Pipe, OD=3.500"
Sch 40:  ID=3.068"
Sch. 80:  ID=2.900")

CAPACITORS
TRANSMIT COIL

BUCKING COIL/AMPLIFIER ASSEMBLY
RECEIVE COIL

1.00 and 4.25 m

0.37 and 0.7 m

0.19 m
0.29 m

0.57 m

0.32 m

TOOL HOUSING
(4" PVC Pipe, OD=4.500"
Sch 40:  ID=4.026"
Sch. 80:  ID=3.826")

0.32 m

0.37 m

0.94 and 1.27 m

0.1 m

0.1 m

5.59 m (18.3 ft)

WIRE STRAIN RELIEF

RECEIVE AND
BUCKING
SIGNAL WIRES

WIRE STRAIN RELIEF

TRANSMIT
POWER
WIRES

5.79 m (19.0 ft)

4" PVC COUPLING
WITH 4" x 1/2" BUSHING

CLAMSHELL
TOP

COIL ASSEMBLY
SIDE VIEW

A

A

SECTION A-A
COIL MOUNTING

BRACKET

4" PVC COUPLING
WITH 4" x 1" BUSHING AND
1" SLIP x 1" FEMALE NPT ADAPTER

BOREHOLE CASING
(6" PVC Pipe, OD=6.625"
Sch 40:  ID=6.065"
Sch. 80:  ID=5.761")

fits inside

PUSHER RODS, 3 EACH
(1" PVC OR CPVC PIPE WITH 1"
MALE AND FEMALE NPT ENDS
OD=1.315"
Sch 40:  ID=1.049"
Sch. 80:  ID=0.957")

3.05 m (10.0 ft)

Lab test fixture diagram for LFIE tool

Initial bench testing of TX-RX coil setup

RX coils:
z-coil (right)
x/y coil (left)
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Tool Construction and Lab Testing



Lock-in-Amplifier

oscilloscope

Rx1

Rx2

CH1 CH2 RP

monitoring

Tx

Power Amp

+Vsupply

-Vsupply

+

-

+ -

+

-

Pre-Amp PCB

  

  

Tektronix MSO-scope 2024

Pre-amp PCB

Power Amplifier

SR830 DSP Lock-in-Amplifier

Tx coil (x,y) Tx coil (z) Rx coil (x,y,z)
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Lab Test Setup



− 𝐙𝐙𝐈𝐈𝐈𝐈𝐮𝐮𝐈𝐈𝐈𝐈𝐫𝐫𝐈𝐈𝐈𝐈𝐈𝐈 𝐀𝐀𝐈𝐈𝐮𝐮𝐀𝐀𝐈𝐈𝐈𝐈𝐮𝐮𝐀𝐀 𝐅𝐅𝐅𝐅𝐈𝐈𝐈𝐈
Conductivity at 20℃ is 33.4 − 35.8 ⁄MS m
Thickness is 25.4 ± 10% µm
also verified with micrometer measurement
− 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐫𝐫𝐈𝐈𝐀𝐀𝐄𝐄𝐈𝐈𝐈𝐈 𝐈𝐈𝐄𝐄𝐈𝐈𝐮𝐮𝐄𝐄
Plexiglass, PVC pipes, nylon rod and Lexan
− 𝐂𝐂𝐅𝐅𝐀𝐀𝐄𝐄𝐈𝐈𝐫𝐫𝐈𝐈𝐈𝐈𝐅𝐅𝐈𝐈 𝐈𝐈𝐅𝐅 𝐫𝐫𝐄𝐄𝐈𝐈𝐈𝐈 𝐈𝐈𝐈𝐈𝐬𝐬𝐄𝐄 𝐡𝐡𝐡𝐡𝐈𝐈𝐫𝐫𝐈𝐈𝐮𝐮𝐈𝐈𝐈𝐈𝐡𝐡 𝐟𝐟𝐫𝐫𝐈𝐈𝐡𝐡𝐈𝐈𝐮𝐮𝐫𝐫𝐄𝐄𝐈𝐈

a) Circular Fractures b) Elliptical Fractures c) Rotated Fractures

x
y

2: 1
4: 3
1: 1

12 cm

0°, 21°, 33°,
47° and 61°

12 cm

𝑟 = 20 cm
15 cm
10 cm

12 cm

Lab Test Fracture Models
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Lab Measurements
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• All coils were tested to verify specs.
• A single coil configuration is tested at 

a time.
• Transmitter coil currents are 

measured during tests and results are 
normalized with respect to currents.

• At every sampling point data were 
recorded for a minute or more and 
signal to noise ratio is shown to be 
strong.

• Signals are referenced with respect to 
voltage around the transmitter coil. 
Reference phase is used to rotate the 
output channels to get in-phase (real) 
and quadrature (imaginary) 
components of received signals.



Results – Lab Measurements
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Results – Lab Measurements
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Results – Lab Measurements
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Comparison of Lab Results with Simulations



32

Near-surface field testing



Uncovering the partially collapsed slot box and installing the 2X10 support beams.
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Near-surface field testing
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Borehole
conductive target

Formation

Air

z

x

y

TxRx1Rx2

Near-surface field testing
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Results – Near-surface Field Test

UT simulation
ESTI experiment

UT simulation
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• A lab prototype tool (transmitters and bucked receivers) has been built and 
tested in the lab and a near-surface test site.

• Excellent agreement is obtained between the model predictions and the 
lab measurements for different T-R configurations.

• The results from the tests suggest that a commercial tri-axial EM tool can 
be built that has the potential to map the geometry of hydraulic fractures 
in open-hole completions.

• The prototype induction tool is shown to differentiate surface area, aspect ratio and 
dip angle of the fracture models used.

• The highest signal levels occur when the primary magnetic field is perpendicular to 
the plane of the target.

• From the principle of reciprocity, the response is the same if the source and receivers 
are interchanged.

• Simulations suggest that we can see fractures out to 300 ft away from the wellbore. 
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Summary of Experiments

More details of the Lab and Near-Surface Test:
[2] J. Shiriyev, Y. Brick, P. Zhang, A.E. Yilmaz, C. Torres-Verdin, M.M. Sharma, T. Hosbach, M.A. Oerkfitz, and J. Gabelmann, “Experiments and simulations 
of a prototype tri-axial electromagnetic induction logging tool for open-hole hydraulic fracture diagnostics”, Geophysics, 2018



• Task 1.0 – Project Management Plan 
• Task 2.0 – Development of forward model for the proposed tool and 

different fracture geometries
• Task 3.0 – Lab testing of available proppants in the market for electrical 

and material properties
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of prototype tool
• Task 6.0 – Inverting data to obtain the fracture geometry

37
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Derivative Free Directional Search
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Single Fracture Analysis
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Single Fracture Analysis
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Single Fracture Analysis
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Single Fracture Analysis
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Multiple Fractures
• The effect of neighboring fractures on the signal of interest is observed on 

the long spacing receiver:
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Multi-Fracture Inversion
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Multi-Fracture Inversion
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Summary of Inversion Analysis

• The three-component induction measurements provide us the ability to 
map the length, width and orientation of multiple propped hydraulic 
fractures.

• An inversion algorithm has been built and tested with synthetic data.
• Excellent agreement is obtained between the “true” and estimated model.
• Inversion results show that data from the prototype tri-axial EM tool that 

has been built can map the geometry of multiple hydraulic fractures:
• The induction tool is capable of measuring fracture conductivity (width), surface area 

(length), and dip angle for planar fractures.
• Data from the tool can also be accurately inverted to obtain the fracture geometry 

for each cluster in each stage along the wellbore.
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• Rolling Bulkheads on end of each sub reducing 
sliding friction against tool in horizontal wellbores 47

Commercial Tool Specifications



 Are inexpensive conductive proppants available? 
 Yes

 How far can we image the proppant in the fracture?
 About 300 ft. from the wellbore in OH

 Is the signal to noise ratio sufficient to provide us with a 
reliable measurement?
 Yes

 Can the measured signal be inverted to provide fracture 
dimensions and orientation?
 Yes

Answers to Key Questions

48



Thank you & Questions

Thanks to DOE for funding the project
DE-FE0024271
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Resistivity measurements for electrically conductive 
proppant 

Proppant: Experimental Results

Density: 1.14 g/cm3

Porosity: 43.9%
End point: 3.2x10-4

Density: 1.27 g/cm3

Porosity: 37.6%
End point: 2.4x10-4mΩ⋅ mΩ⋅



Fracture Conductivity and Normalized 
Conductivity for Sand and EC-Proppant

FCD = kf*w / Lf*k

FCD = 5 / (500*10-4)

FCD = 100
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Normalized Conductivity for Sand and EC-Proppant
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Project Schedule
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Development Plan

Simulation

Experiment Design

Data Acquisition

Inversion

Physical 
Constraints

Design Field 
Deployable Tool
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Research Challenges and Technology/Knowledge Advances

Capabilities and Limitations of Current 
Fracture Diagnostic Methods
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Capabilities and limitations of indirect and direct hydraulic fracture diagnosis techniques
(Adapted from Cipolla and Wright, 2000)

ᴧ .
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• Goals/Objectives
• Schedule (Gantt Chart)
• Summary of progress to date
• Budget by Year/Phase/Budget Period
• Anticipated Products/Expected Outcomes/Key 

Deliverables
• Impacts 
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Project Summary



59

Fracture Conductivity and Normalized 
Conductivity – Sand and Coke – 70/100 mesh



75% sand (seawater) 3.24 × 10−3 Ω � 𝑚𝑚 @5000 psi
60

Electrical Resistivity: 40/70 mesh



75% sand (sea water) 3.18 × 10−3 Ω � 𝑚𝑚 @5000 psi

61

Electrical Resistivity: 70/100 mesh
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