Project ESD12010: Numerical Studies for the Characterization of Recoverable Resources from Methane Hydrate Deposits

George Moridis, <u>Matthew Reagan</u>, Alejandro Queiruga Lawrence Berkeley National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Presentation Outline

- 1. Accomplishments to Date (overview)
- 2. Technical Status (FY18/current BP)
 - Code Maintenance and Upgrades
 - Assessment of Resource Recovery During Production from Oceanic Hydrates
 - Support of DOE Field Activities and Collaborations
 - IGHCCS2
 - Simulation of NGHP-02-9 Offshore India Production Test
- 3. Accomplishments to Date (pre-FY18)
- 4. Paths Forward
- 5. Lesson Learned
- 6. Synergies

Accomplishments to Date

Objective: To develop the knowledge base and quantitative predictive capability to describe the most important processes and phenomena associated with gas production from hydrate deposits

Program Components:

- TOUGH+HYDRATE: simulator for hydrate-bearing reservoirs
- Design and evaluation of DOE and industry production tests
- Behavior of hydrates in the natural environment
- Coordinating laboratory work
- Collaborations and training

This is the 6th year (budget period) of the current project, part of a 20-year DOE-funded hydrate program at LBNL

Technical Status

- 1. Code Maintenance and Upgrades
- 2. Assessment of Resource Recovery During Production from Oceanic Hydrates
- 3. Support of DOE Field Activities and Collaborations
 - 1. IGHCCS2
 - 2. Simulation of NGHP-02-9 Offshore India Production Test

Code Maintenance and Upgrades

TOUGH+HYDRATE Codes

T+H is a fully compositional simulator capable of handling (a) equilibrium or kinetic dissociation, and (b) all possible dissociation mechanisms (depressurization, thermal stimulation, inhibitor effects, combinations)

Code Maintenance and Upgrades

New "Millstone" Coupled Geomechanical Simulator

Code Maintenance and Upgrades

- Millstone includes a 2D axisymmetric formulation for vertical well problems
- Pure-C code with Python-based interface
- User-controlled constitutive models
- New coupled T-H-M codebase released in January 2018:

Moridis, G.J., Reagan, M.T., Queiruga, A.F., "The TOUGH+Millstone Code for the Analysis of Coupled Flow, Thermal, Chemical, and Geomechanical Processes in Hydrate-Bearing Geologic Media, Part I: The Hydrate Simulator," submitted to *Transport in Porous Media*.

Queiruga, A.F., Moridis, G.J., Reagan, M.T., "The TOUGH+Millstone Code for the Analysis of Coupled Flow, Thermal, Chemical, and Geomechanical Processes in Hydrate-Bearing Geologic Media, Part II: Numerical Algorithms and the Stone Geomechanical Simulator," submitted to *Transport in Porous Media*.

Reagan, M.T., Queiruga, A.F., Moridis, G.J., "The TOUGH+Millstone Code for the Analysis of Coupled Flow, Thermal, Chemical, and Geomechanical Processes in Hydrate-Bearing Geologic Media, Part III: Application to Production Simulation," submitted to *Transport in Porous Media*.

Assessment of Resource Recovery During Production from Oceanic Hydrates

Importance of Coupled Geomechanics

- Addition of coupled geomechanics increases predicted dissociation/production rate
- Changes evolution of system → heterogeneous dissociation vs. lensing

International GH Code Comparison Study

International effort to compare coupled flow-thermalgeomechanical simulators used for the simulation of gas hydrate production

- Shared test problems ranging from 1D flow simulations to 3D T-H-M production cases
- LBNL problem lead for Problem #3 (radially symmetric flow and geomechanics, compared to analytical solution)
- LBNL also testing **mesh convergence** for standard Darcybased hydrate simulation methods
 - How do we really design our meshes?
 - Are we using the correct discretization?

Spoiler: Current "fine" meshes seem to converge

		Layer #	Layer	Δz	Z _b	
				(m)	216.7	
		1	Agu01	1.0	-210.7	Toot
INGILI		2	Aquoi	0.0	-217.5	lest
		3		1.5	-210.0	
			Aqu02	0.0	-219.3	
		6	Agu03	0.2	-220.4	
		7	Aqu03	0.2	-220.0	2 1 S Top of 6H-bearing
			Agu04	0.0	-221.4	14 2462.9 mbrt (MD)
	Sealevel	0	Aqu04	0.0	-222.0	0.0
		10	Mud01	0.5	-225.8	13
		10	Widdon Hyddon	1.2	-223.0	
	2219.5 m Ocean water	12	Mud02	0.4	-227.1	04
		12		0.4	-227.3	
		14	Mud02	0.3	-227.0	22
	z = 0	14	Hudos	0.2	-220.0	0.5
	Sea floor	10	Hyduo Mud04	0.4	-220.4	12
		10	Widd04	0.2	-220.0	0.1 0.2 0.2 0.2
		1/	Hyd09	0.5	-229.1	0.2
	214.9 m Overburden mud	10	IVIU005	0.2	-229.3	
	214.5 m Overburden - Inda	19	AguiOE	1.0	-230.0	
		20	Aqu05	1.1	-231.7	
		21	Hydii	0.8	-232.5	0.7
	HBS top	22	Aquus	0.3	-232.8	
		23	Hyd12	1.1	-233.9	26
		24	Aqu07	0.4	-234.3	
	53.6 III HBS sequence	25	Hydia	0.7	-235.0	12
		20	Aqu08	1.3	-230.3	
	HBS bottom	2/	Agu00	2.0	-230.9	
		20	Aqu09	1.2	-240.1	
		20	Agu10	1.5	-241.4	
	224 5 m Underhurden mud	30	Aquito	0.9	-240.3	
	331.5 m Onderburden - Inda	20	Mud06	0.6	-230.0	
		32	Wud06	0.0	250.0	
		24	Mud07	2.5	-232.9	0.6
	Simulation domain bottom	34	Wud07	0.4	-200.0	
		30	Hyulo Mud08	0.5	-200.0	0.4 05
		27	Widdoo	0.4	-204.2	0.4
		3/	Mud00	0.5	-204.7	12
		20	Mud09	1.2	-200.1	M (1)
			Mud10	0.4	-200.3	15
		40		1.4	-230.7	
		41	Mud11	0.6	-200.1	20
K B		42	Undoo	1.5	-200.7	04
		43	Mud12	1.5	-200.2	
t======		44		2.0	-202.2	15
		45	Mudda	0.0	-203.0	
		46	IVIU013	0.4	-203.4	.13 Rate of GH-beasing
		47	Mud14	1.2	-204.0	Reservoir
		48		1.4	-200.0	
		49	Hyuzo	2.5	-200.0	

Discretization: 452 x 525 in (r,z) – 237K elements, 948K eqs

Flow & Thermal Properties:

- 51 separate units
- 25 Hydrate Layers, 10 sand layers: $\Phi = 0.45$, $k_r = k_0 = 10 D$
- $k_{eff} = 1.0 \text{ mD}$ when $S_H = 0.75$, $k_{rel} = (S^*)^n = 0.001$, n = 3.86
- 10 mud Interlayers: $\Phi = 0.45$, $k_r = 0.01$ mD, $k_z = k_r$
- Overburden & Underburden: Same as mud layers
- Thermal properties (all): κ_Q (W/m/s) = 0.3 dry, 1.76 wet **Initial conditions**:
- Pressure: Hydrostatic distribution
- Temperature: Distribution by equation provided by USGS (Collett)
- Hydrate saturations: 0.75 in all HBS

Production Method: constant bottomhole *P* = 3 MPa **Boundaries:**

- Top: Ocean Floor, Constant P, T
- Bottom: @ -2788 m, Constant P, T
- Lateral: @ r = 2000 m, Constant P, T
 Production Strategies:
- (up to) 540 day field test
- Single well
- Multiple wells (pattern), *r* = 500 m, 100 m, 75 m

- Reference case (single well, open) abandoned at quasi-steady state
- Multiple wells, but not too tight, enhance gas generation and production

- Reference case (single well, open) abandoned at quasi-steady state
- Multiple wells, but not too tight, enhance gas generation and production
- High volumes of gas can be produced...
- ...with a lot of water.

75 m

[±]0.000e+00

Geomechanical Response

- Forward-coupling of T+H to "Millstone" simulator
- Saves millions of CPU-hours
- Demonstrates ability to postprocess results to estimate geomechanical response
- Subsidence/uplift significant but reasonable

NGHP-02-9 site does not appear to be a good candidate for a field

test*

*Assuming reservoir parameters/simulation inputs are correct

Production case: <u>appears</u> quite promising, but:

- Water control issues (Aqu10 unit)
- Very case-specific behavior
- Geomechanics must be considered
- Significant data gaps: better data needed for reliable simulations
- Careful study of the site and a long term production test a must

Moridis, G.J., Reagan, M.T., Queiruga, A.F., Collett, T.S., Boswell, R., Evaluation of the Performance of the Oceanic Hydrate Accumulation at the NGHP-02-9 Site of the Krishna-Godawari Basin During a Production Test and Under Full Production, submitted to *J. Marine and Petroleum Geology*.

Moridis, G.M., Reagan, M.T., Queiruga, A.F., Geomechanical Stability and Overall System Behavior of Sloping Oceanic Accumulations of Hydrates Responding to Dissociation Stimuli, OTC-24896-MS, *Proc.* Offshore Technology Conference-Asia, 20 March 2018.

Accomplishments to Date

TOUGH+HYDRATE and pTOUGH+HYDRATE are used:

- by **40+** research organizations in 18 countries
- by 8 international oil and gas companies

LBNL and/or T+H have been involved in the planning and design of *nearly* every international field test or proposed field test:

- Mallik (DOE/Japan)
- PBU-L106 (DOE)
- "Mt. Elbert" Unit-D (DOE)
- Ignik Sikumi (DOE/ConocoPhillips)
- AC818/"Tigershark" (DOE/Chevron)
- Ulleung Basin (DOE/KIGAM)
- India NGHP-02 (DOE/India)
- Shenhu (China) (T+H code)

Accomplishments to Date

Other activities:

- Nearly 20 years of experience in laboratory and simulation work
- Over 110 publications (50+ peer-reviewed, 60 reports and conference papers)
- Over 70+ national and international presentations (many invited)
- 9 keynote presentations
- Invited presentations at the 2010, 2012, 2018 Gordon Research Conferences (2018 Keynote)
- Feature articles in Journal of Petroleum Technology, Oil and Gas Reporter, Nature Reports Climate Change
- Regular training courses (national and international)
- 2 MSc and 3 PhD students

Lessons Learned

Long-term experience tells us:

- Complex hydrate systems are challenging to simulate!
 - Fine meshes: discretization determines evolution!
 - Sharp fronts → small timesteps
 - Consumption of CPU-hours: 10⁶++
- Practical production targets must have good boundaries
- Simulations constrained by data limitations
 - Are we capturing enough heterogeneity?
 - Are the meshes fine enough? (CCS)
- Geomechanical response critical to evaluating potential

Paths Forward

Next budget period:

- 1. Support of the Design of the Proposed Alaska Field Test
 - Model development, scoping runs
 - Production simulation, sensitivity studies
- 2. Participation in the (ongoing) Code Comparison Study (IGHCCS2)
- 3. Support of DOE's International Activities and Collaborations
 - India NGHP
 - KIGAM
- 4. Investigation of Machine Learning Methods for Reduced Order Modeling
- 5. Code Maintenance, Upgrades, and Support
- 6. Publications, Travel, Tech Transfer

Synergy Opportunities

- The 2nd Code Comparison Study is identifying the most critical issues related to simulator design and simulation techniques
- Comparisons of results obtained using the various approaches builds confidence in the results and the program
- The large scale of hydrate development requires international collaboration

Appendix

Benefit to the Program

The objectives of the Program are to:

- Identify and accelerate development of economically-viable technologies to more effectively locate, characterize, and produce natural gas and oil resources, in an environmentally acceptable manner
- Characterize emerging oil and natural gas accumulations at the resource and reservoir level and publish this information in a manner that supports effective development
- Catalyze the development and demonstration of new technologies and methodologies for limiting the environmental impacts of unconventional oil and natural gas development activities

Benefit to the Program

Benefits to the program include:

- Developing the necessary knowledge base and quantitative predictive capability for the description of the most important processes and phenomena associated with gas production from hydrate deposits
- Developing the fastest and most advanced numerical simulation capabilities for the solution of the difficult problems of stability, characterization, and gas recovery from methane hydrate deposits
- Involvement in the planning and design of nearly every US and international field test of hydrate technologies

Project Overview Goals and Objectives

The overall objective of this effort is to further enhance earlierdeveloped powerful numerical simulators, and

- Use them to perform studies on the characterization and analysis of recoverable resources from gas hydrate deposits,
- Evaluate of appropriate production strategies for both permafrost and marine environments,
- Analyze the geomechanical behavior of hydrate-bearing sediments,
- Provide support for DOE's hydrate-related activities and collaborative projects

The research will support the hydrate scientific community by making available the fastest and most advanced numerical simulation capabilities for the solution of the difficult problems of stability, characterization, and gas recovery from methane hydrate deposits.

Organization Chart

Gantt Chart

Budget Period		#6, FY 17		#6, FY18			
Quarter		Q4	Q1	Q2	Q3	Q4	
Task 1.0 Project Management and							
Planning							
Task 2.0 Code Maintenance & Upgrades							
Subtask 2.6: Geomechanical Coupling of						X	
STONE/T+H							
Task 3.0 Support of DOE's Field							
Activities and Collaborations							
Subtask 3.6: Detailed Analysis of the							
Production Potential of Hydrates Deposits						X	
Offshore India							
Subtask 3.7: Participation in the Code							
Comparison Study of Coupled Flow,						X	
Thermal and Geomechanical Processes							
Task 4.0 Assessment of Resource							
Recoverability From Natural Hydrate							
Deposits							
Subtask 4.4: Production Strategies to Avoid							
Dissociation Constraints During Production						X	
from Oceanic Hydrate Deposits							
Task 5.0 Support for the Design and							
Analysis of Laboratory Experiments							

Bibliography

For this budget period:

- Moridis, G.J., Reagan, M.T., Queiruga, A.F., Collett, T.S., Boswell, R., Evaluation of the Performance of the Oceanic Hydrate Accumulation at the NGHP-02-9 Site of the Krishna-Godawari Basin During a Production Test and Under Full Production, submitted to J. Marine and Petroleum Geology.
- Boswell, R., Myshakin, E., Moridis, G.J., Konno, Y., Collett, T.S., Reagan, M.T., Ajayi, T., Seol, Y., Scientific Results of Numerical Simulation of Gas Hydrate Reservoirs in the Offshore of India: National Gas Hydrate Program Expedition-02, submitted to J. Marine and Petroleum Geology.
- Moridis, G.J., Reagan, M.T., Queiruga, A.F., The TOUGH+Millstone Code for the Analysis of Coupled Flow, Thermal, Chemical and Geomechanical Processes in Hydrate-Bearing Geologic Media, Part I: The Hydrate Simulator, submitted to Transport in Porous Media.
- Queiruga, A.F., Moridis, G.J., Reagan, M.T., The TOUGH+Millstone Code for the Analysis of Coupled Flow, Thermal, Chemical and Geomechanical Processes in Hydrate-Bearing Geologic Media, Part II: Numerical Algorithms and the Millstone Geomechanical Simulator, submitted to Transport in Porous Media.
- Reagan, M.T., Queiruga, A.F., Moridis, G.J., The TOUGH+Millstone Code for the Analysis of Coupled Flow, Thermal, Chemical and Geomechanical Processes in Hydrate-Bearing Geologic Media, Part III: Application to Production Simulation, submitted to Transport in Porous Media.

Bibliography

- Reagan, M.T., Moridis, G.J., Seim, K.S., 2017. Fast Parametric Relationships for the Large-Scale Reservoir Simulation of Mixed CH4-CO2 Gas Hydrate Systems, Computers and Geosciences, 103, 191-203.
- Moridis, G.J., T.S. Collett, R. Boswell, S. Hancock, J. Rutqvist, C. Santamarina, T. Kneafsey, M.T. Reagan, M. Pooladi-Darvish, M. Kowalsky, E.D. Sloan, and C. Koh, 2013. Gas Hydrates as a Potential Energy Source: State of Knowledge and Challenges," in: Advanced Biofuels and Bioproducts, J.W. Lee (ed.), 977-1035, Springer, New York, Heidelberg, Dordrecht, London, ISBN 978-1-4614-3347-7, doi: 10.1007/978-1-4614-3348-4.
- Moridis, G.J., Kim, J., Reagan, M.T., Kim, S.J., 2013. Feasibility of Gas Production from a Gas Hydrate Accumulation at the UBGH2-6 Site of the Ulleung Basin in the Korean East Sea, J. Petro. Sci. Eng., doi: 10.1016/j.cageo.2013.04.001.