

Overview of the CCUS R&D Programs

August 14, 2018

Mark Ackiewicz

Director, Division of Emissions Control and CCUS R&D

1 | Office of Fossil Energy fossil.energy.gov

Outline

- Overview (Accomplishments, Drivers, Goals)
- Carbon Capture Program
- Carbon Utilization Program
- Carbon Storage Program

Office of Clean Coal and Carbon Management – What we do

Advanced Energy Systems

Technologies that greatly improve plant efficiencies, reduce CO₂ capture costs, increase plant availability, and maintain the highest environmental standards

Carbon Capture and Utilization

R&D and scale-up technologies for capturing and using CO₂ from new and existing industrial and power-producing plants

Carbon Storage

Safe, cost- effective, and permanent geologic storage of CO₂

Cross Cutting Research

Materials, sensors, and advanced computer systems for future power plants and energy systems integrated with CCS

Some accomplishments over the past fiscal year

- Petra Nova achieves 1 million tons mark;
 Power Engineering's 2017 Best Coal Fired Project and 2017 Best Overall
 Power Project
- Air Products reaches 4 million metric tons
- National Carbon Capture Center receives
 Pioneer Award from Peabody
- Carbon Capture Projects <u>are starting to</u> <u>scale-up</u>; moving beyond the lab
 - moving from concept (paper) → lab
 (lbs/day) → bench (up to 1 tpd) →
 small pilot (10s of tpd) → large pilot
 (100s of tpd)
- CCSI toolset released as open source
- NRAP receives R&D 100 award
- Carbon X-Prize: 10 teams announced as finalists (non-DOE)

National Carbon
Capture Center Testing
Facilities

Small Pilot-Scale Unit

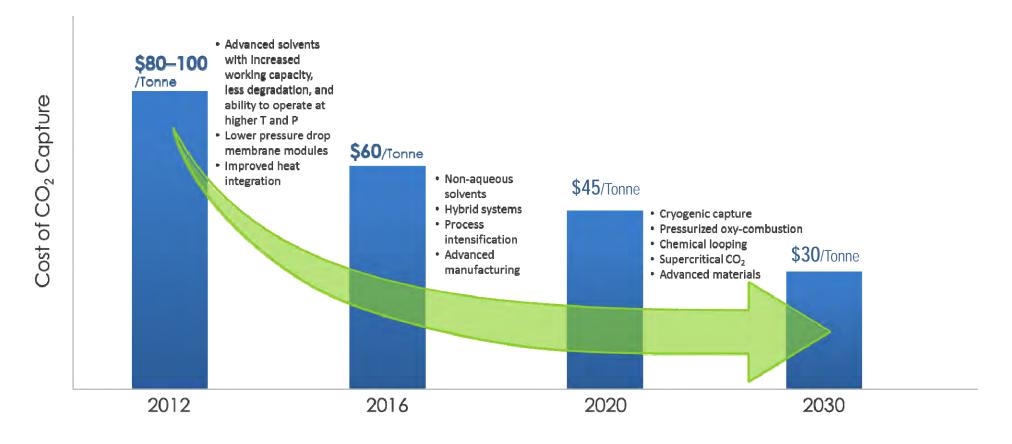
Drivers for Adoption of CCUS

- Expansion of 45Q tax incentives for CO₂ storage in saline (\$50/tonne), EOR, Utilization and Air Capture (\$35/ton)
 - Projects must begin construction by 2024
 - Minimum capture for small generators, air capture, and EGUs
 - Credit can be assigned to capture or disposal facility
 - LCA required guidelines TBD
- Other tax and financial incentives under consideration include:
 - Master Limited Partnerships (MLPs)
 - Private Activity Bonds (PABs)
 - Investment tax credits (ITCs)
- Diverse stakeholder support for proposed CCS legislation

High-level Program Goals and Challenges

Reduce the cost of capture

- Capital cost
- Energy penalty
- Integration


Develop viable carbon utilization alternatives

- Capital cost
- Energy requirements
- Lifecycle assessment

Reduce the risk of geologic storage

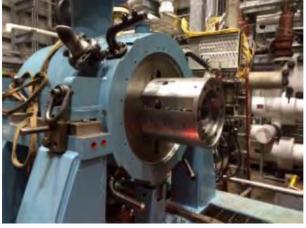
- Higher resolution and quantification (e.g., accurate characterization of faults and fractures)
- Geomechanics (pressure and state of stress)
- Cost

Carbon Capture Program Goals

Carbon Capture R&D Pathways

Pre-Combustion

- □ Solvents
- □ Sorbents
- □ Membranes
- ☐ Hybrid processes
- Water-gas shift reactor


Post-Combustion

- □ Solvents
- ☐ Sorbents
- ☐ Membranes
- ☐ Hybrid processes

Advanced Compression

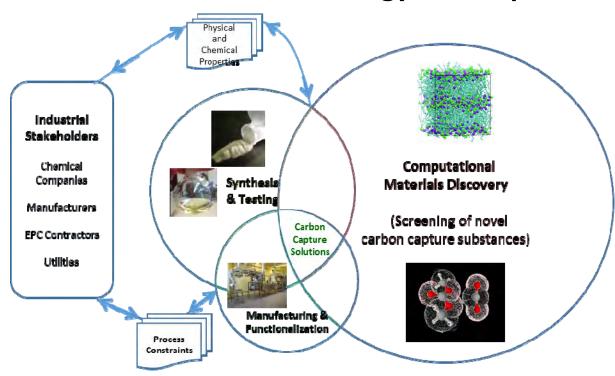
- ☐ Intra-stage cooling
- ☐ Cryogenic pumping
- ☐ Supersonic shock wave compression

Accelerating the Rate of RD&D - Transformational

Partnership between national labs, academia, and industry

Accelerate deployment by 50% in TRL 2-5 range

Parallel paths for materials discovery – synthesis – process design


Leverage advanced computing

Robotics for rapid synthesis and analytical capabilities

DOCCSS Labs

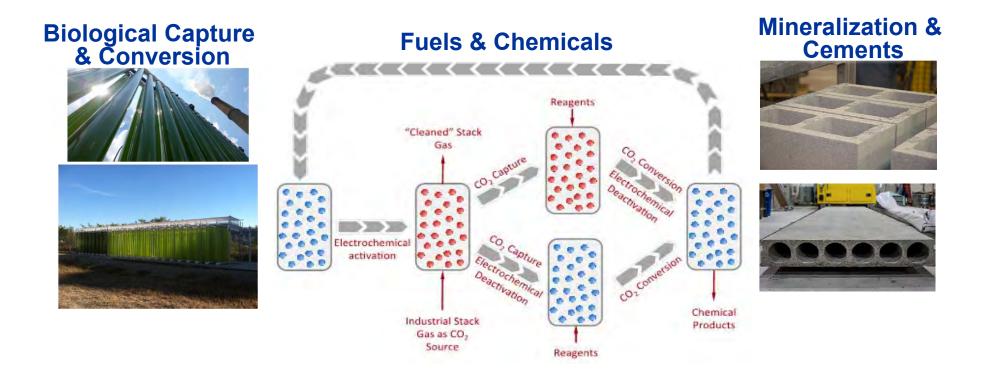

- PNNL Solvents
- LBNL Metal Organic Frameworks
- NETL CCSI2, materials
- LLNL Adv Manufacturing

"Transformational Technology Development"

Non-aqueous and phase change solvents

Molecular Design

Advanced Manufactinrg


Scaling Up Advanced Capture Technologies

Performer	Project Title	Technology
Topic Area 1: Engineering Scale Testing of Advanced Carbon Capture Technologies		
Research Triangle Institute	Engineering Scale Testing of Transformational Non-Aqueous Solvent-Based CO ₂ Capture Process at Technology Centre Mongstad (13MWe)	Non Aqueous Solvent
SRI International	Engineering Scale Demonstration of Mixed- Salt Process for CO ₂ Capture (15MWe)	Physical Solvent
Membrane Technology and Research, Inc.	Scale-Up and Testing of Advanced Polaris Membrane CO ₂ Capture Technology (1MWe+)	Membrane – Partial Capture
TDA Research, Inc.	Membrane-Sorbent Hybrid System for Post- combustion Carbon Capture (2MWe+)	Membrane / Sorbent – 90% capture
Fluor	Multi-component solvent test (13MWe)	Water lean solvent
Topic Area 2: Initial Engineering, Testing, and Design of a Commercial-Scale, Post-Combustion CO ₂ Capture System		
Electric Power Research Institute	Initial Engineering Design of a Post- Combustion CO ₂ Capture System for Duke Energy's East Bend Station Using Membrane- Based Technology	Membrane – Partial Capture
ION Engineering LLC	ION Engineering Commercial Carbon Capture Design & Costing (C3DC)	Non Aqueous Solvent
University of North Dakota	Initial Engineering, Testing, and Design of a Commercial-Scale, Post-combustion CO ₂ Capture System on an Existing Coal-Fired Generating Unit – Milton R. Young Station	Amine Solvent

Carbon Utilization

Carbon Use & Reuse

Offset CO₂ capture costs + Fix CO₂ in stable products

Carbon Use and Reuse

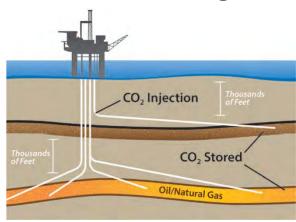
Accelerate a Commercial Pathway to CCUS

- Carbon Utilization Reports
 - National Coal Council
 - National Academies of Science
 - Secretary's Advisory Board
- Novel Methods for Making Products from Carbon Dioxide or Coal FOA (\$7M):
 - AOI 1: Lab-scale CO2 Conversion (Abiotic only
 - AOI 2: Field-scale CO2 Conversion (Biotic or Abiotic)
- NETL Guidelines for Evaluation of Utilization Pathways; Released 2014

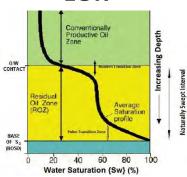
Carbon Storage

Carbon Storage Infrastructure

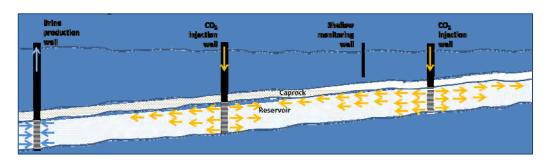
Addressing Large-Scale Challenges


Regional Carbon
Sequestration Partnerships
____(RCSPs)

CarbonSAFE

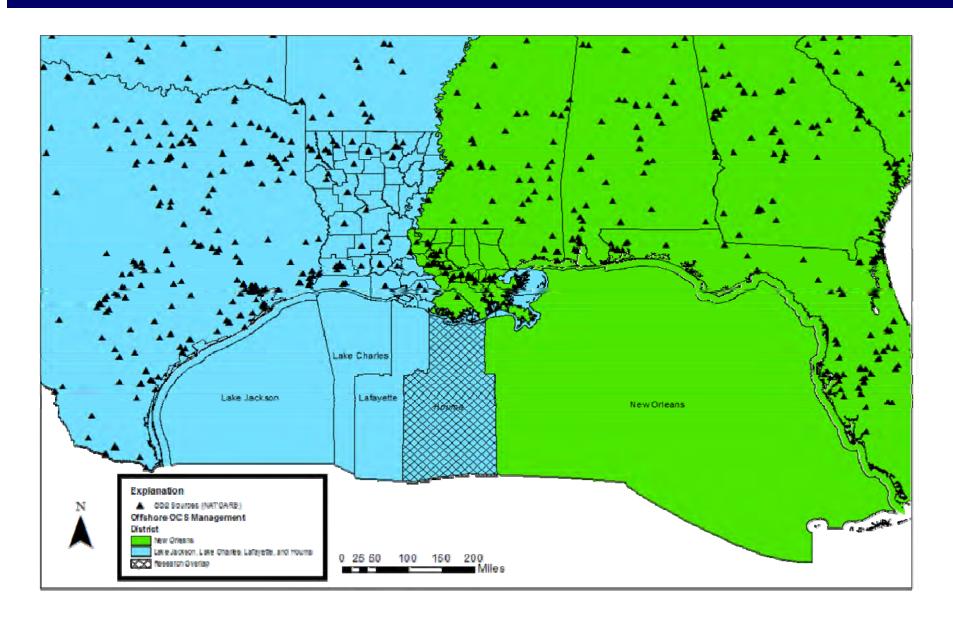


Offshore Storage



Unconventional

EOR

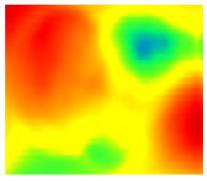

Brine Extraction Storage Tests (BEST)

Phase II: Storage Complex Feasibility

Offshore Projects

Brine Extraction Storage Test (BEST) Projects

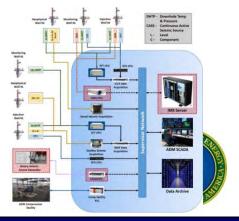
Research objectives:


- ❖ R&D projects for managing formation pressure plumes as well as measuring/monitoring the movement of the differential pressure and CO₂ plumes in the subsurface for future saline CO₂ storage projects.
- Brines extracted shall be utilized as a part of a test-bed for brine treatment technologies (coordinated with Crosscutting R&D/Water Management Program)
- Projects completed in two phases:
 - Phase I Gap analysis and water LCA for brine technologies and develop plans for field project
 - Phase II Validation testing employing water/brine injection
- Phase I: 5 projects were awarded, with a total budget of \$9.35 million (Cost share = \$2.15 million)
- Phase 2: 2 projects awarded:
 - University of North Dakota Energy & Environmental Research Center. Total budget (Phases I and II) DOE share \$17,366,809; Recipient share \$4,915,165. End date 08/31/2020. Status: Initiated construction of wells.
 - Electric Power Research Institute. Total budget (Phases I and II) DOE share \$17,642,791; Recipient share \$4,812,798. End date 08/31/2020. Status: Well construction complete. Initiated equipment procurement and commissioning.

Project Locations

Advanced Carbon Storage Technology Development *Early-Stage Storage R&D*

- Monitoring and measurement tools: advancing modeling and monitoring methods, technologies, and tools to improve characterization and reduce the uncertainty about the CO₂ and pressure fronts.
- Monitoring wellbore integrity: advancing materials and autonomous wellbore monitoring systems for long-term integrity assessment.
- Advanced simulation tools for coupled processes: advancing modeling of fluid flow, mechanical deformation/failure, and geochemistry in complex storage reservoirs.
- National Risk Assessment Partnership: developing sciencebased methodology and platform for quantifying risk profiles, which are being used to develop risk-based, integrated monitoring and mitigation protocols.



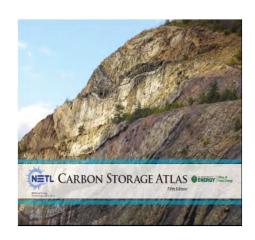
LLNL Toolset for Fault Detection and Seismicity Mitigation -

Modular Borehole Monitoring (MBM)

Flat-Pack

International Activities

Bilaterals


- US-Norway
- US-China Clean Energy Research Center (CERC)

Multilaterals

- North American trilateral
- Clean Energy Ministerial/Mission Innovation
 - MI CCUS Report
 - Accelerating CCUS Technologies (ACT) initiative
- Carbon Sequestration Leadership Forum (CSLF)
- International Energy Agency Greenhouse Gas (IEAGHG)
 R&D Program



Knowledge Sharing Products

Worldwide CCS Project Database

