

10 Megawatts Electric Coal Direct Chemical Looping Large Pilot Plant - Pre-FEED Study

Luis Velazquez-Vargas Bartev Sakadjian Thomas Flynn Jinhua Bao

Outline

- □ Background
 - Project Participants
 - Process Concept
 - > Commercialization Path
- **□ 250 KWth Pilot Facility**
 - > Update on 250 kWth pilot testing
 - > CFM Testing & Particle Synthesis
- **□ 10 MWe Pilot Plant pre-FEED**
 - H&M Balances
 - > Steam Cycle Integration
 - > 10 Mwe Pre-FEED Study
 - > Schedule
- **□** Acknowledgements

Project Participants

- Federal Agencies
 - DOE/NETL
- State Agency
 - Ohio Development Services Agency
- Project Participants
 - Babcock & Wilcox (B&W)
 - Ohio State University (OSU)
 - Clear Skies Consulting
 - Dover Light & Power (DPL)
 - Trinity Consultants
 - Worley Parsons
 - Electric Power Research Institute (EPRI)
 - Johnson Matthey (JM)
- Industrial Review Committee
 - American Electric Power
 - Duke Energy
 - FirstEnergy
 - CONSOL Energy

Development Services Agency

Clear Skies Consulting

CONSOLENERGY

CDCL Reducer Concept

4

CDCL Reducer Concept

CDCL Reducer Concept

CDCL Process

Two-stage Counter-current Moving Bed

CDCL Commercialization Path

CDCL Technology Development

Laboratory 2.5 kWth

- Particle recyclability and reactivity
- Individual reactions in the reducer and combustor

25 kWth

- •Integrated operation reducer and combustor for more than 200 hours
- Coal conversions
- •CO₂ Purity

250 kWth

- Adiabatic reducer operation for more than 250 hours
- Process efficiency
- Evaluate emissions
- •Large scale particle manufacturing
- Particle attrition

4 x 2.5 MWe

- •Long Term operation
- Coal distribution
- Modular integration and operation - Start up, turn down, shutdown cycles
- •Steam generation
- •Economics

1 x 70 MWe

- •Commercial Operation of a single module
- Fabrication

Scale Up Plan

x10

x10

x30

x30

4 x 2.5 MWe 1 x 70 MWe

Laboratory 2.5 kWth

Critical Dimension

Scale up Factor:

x1

Reducer reactor

Critical Dimension:

1.5"

25 kWth

Critical Dimension Scale up Factor:

x4

Reducer reactor Coal distribution Distance:

Critical Dimension Scale up Factor:

250 kWth

x6

Reducer reactor Coal distribution Distance: 3'

Critical Dimension Scale up Factor:

x2.3

Reducer reactor Coal distribution Distance:

7'

Critical Dimension Scale up Factor:

 $\mathbf{x2.8}$

Reducer reactor Coal distribution Distance:

20'

250 kW_{th} Pilot Plant - Design

Specifications

Materials: Refractory lined Carbon Steel

Max Operating Temperature: 2012 °F

Reducer : Counter-current moving bed

Combustor : Bubbling bed

Overall Height: 32 ft

• Footprint = 10' x 10'

Thermal Rating: 250 kWth

Coal Feed Rate: 10 to 70 lb/hr

Coal Size: Pulverized coal

Particle Transport: Pneumatic

Oxygen Carrier: Iron based

Oxygen Carrier Size: 1.5 mm

250 kW_{th} Test Campaign Summary

Test	Campaigns	Main Achievements	Lessons Learned						
#1	Initial Heat up (DE-FE-0009761)	Heated up to 1600 °F for more than 24 hrs	Quench systemNeed extra NG injection						
#2	Unit shake down, start up and operation (DE-FE-0009761)	 Reached 1800 °F Achieved expected solid circulation Characterization of temperature/pressure distributions, gas sampling and analysis 	 Coal injection pressure unbalance Blower capacity low at startup 						
#3	Coal injection test (DE-FE- 0037654)	 Reached 1950 °F Injected coal successfully High volatile conversion 	Air infiltrationFlame temperature startup sensitivity						

250 kW_{th} Pilot – Test Results

250 kW_{th} Pilot – Test Results

high coal volatile conversion

Modifications to the Pilot Facility

Hardware

- 1. Air Compressor
- 2. Electric air pre-heaters
- 3. Natural gas distributor for direct injection
- 4. Modified gas sampling system to prevent leaks
- 5. Modified access port to the reducer to allow hot gas injection
- 6. Forced-air fan to quench system
- 7. Insulate reactor shell to reduce heat losses

Operation

- 1. pre-heating reducer
- 2. Positive pressure operation
- 3. Using quench air instead of water

NEXT TEST RUN SCHEDULED ON AUGUST 20th

CFM Testing

Reducer Reactor

- PSRI: adapting existing CFM units Coal distribution in reducer reactor

Combustor Reactor

- Particle mixing and distribution In-bed Heat Exchanger

Oxygen Carrier Manufacturing

Pre-FEED Study

- Heat & Material Balances
- Functional Specifications
 - Mechanical
 - Electrical, Instrumentation & Controls
 - System specifications (CDCL Operation & Steam Cycle)
- Piping & Instrumentation Diagrams
- General Arrangement Drawings
- Foundation and Steel Structural Supports
- Balance of Plant Equipment
 - Coal Handling System
 - Oxygen Carrier Handling System
 - Ash and Fines Handling System
 - Environmental Control Equipment
 - ► CO₂ Compression System

Heat & Material Balance

Primary Loop Cycle

Steam Cycle

10 MWe Modular Pilot Design

- 4 Modules of 2.5 MWe
- 1st module will be built and operated to validate the design.
- Following modules will be constructed
- Integration of the modules operation and controls

Advantage of Modular Design and Sparing Philosophy

- Startup
 - Sequential module startup with sharing resources
- ☐ High Reliability
 - Independent steam generation
 - Easier for scheduling maintenance
 - 4-33% modules provide full load capacity with module-out of service
- ☐ Flexible Operation
 - Fast response
 - Turn down/up
 - Particle exchange among modules

Host Site: Dover Light & Power

Existing

- 20 MWe Stoker coal fired boiler
- 20 MWe Steam turbine

Planning

- 10 MWe natural gas package boiler
- 10 MWe CDCL unit
- 20 MWe Steam turbine
- Increase power capacity
- Preserve a balance between coal and natural gas
- Potential CO₂ market from local industries

20 MWe Steam Turbine

Dover Plant Layout

CDCL Module Design

10 MWe Pilot Facility

Schedule

10 MW CDCI pro FEED STUDY		2	017				2019		
		FISCAL YEAR 1			FISCAL YEAR 2				FY3
10 MWe CDCL pre-FEED STUDY	4/1/17 - 9/30/17			10/1/2017-9/30/2018				10/1/18 - 3/31/19	
	1 2 3	4 5 6	7 8 9	10 11 12	1 2 3	4 5 6	7 8 9	10 11 12	1 2 3
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q4	Q1
Task 1. Project Management and Planning									
Task 2. 250 kW₁ Pilot Facility & CFM Testing									
Subtask 2.1. 250 KW _t Pilot Testing									
Milestone: 250 kW , Pilot Testing Report									
Subtask 2.2. Design, Construction and Testing of Modular CFM									
Milestone: Cold Flow Model Testing Report									

Schedule

10 MW/o CDCL pro EEED STUDY		20)17				2019		
		FISCAL YEAR 1			FISCAL YEAR 2			2 FY3	
10 MWe CDCL pre-FEED STUDY	4/1/17 - 9/30/17			10/1/201		7-9/30/2018		10/1/18 - 3/31/19	
	1 2 3	4 5 6	7 8 9	10 11 12	1 2 3	4 5 6	7 8 9	10 11 12	1 2 3
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q4	Q1
Task 3. 10 MW _e Pilot Facility Design and Costing									
Subtask 3.1. Host Site Selection and Agreement									
Subtask 3.2. Modular CDCL Reactor System Integration Design									
Subtask 3.3. Technology Engineering Design Specifications									
Milestone: Design Basis Report									
Subtask 3.4. Technology Readiness and Risk Assessment									
Subtask 3.5. Oxygen Carrier Commercial Manufacturing Development									
Milestone: Oxygen Carrier Commercial Manufacturing Report									
Subtask 3.6. CDCL Large Pilot Facility Design									
Subtask 3.6.1 Detail Heat and Material Balances									
Subtask 3.6.2. Development of Functional Equipment Specifications									
Subtask 3.6.3. Development of a Performance Testing Plan									
Subtask 3.6.4. Integration of Pilot Facility with Existing Equipment									
Subtask 3.6.5. Piping & Instrumentation Diagrams (P&IDs) Drawings									
Subtask 3.6.6. Mechanical, Electrical and Equipment Specifications									
Subtask 3.6.7. System Control Specifications									
Milestone: Design Functional Specifications									
Subtask 3.6.8. Hazard Design and Harzard Operation Analysis									
Subtask 3.6.9. General Arrangement Drawings									
Subtask 3.6.10. Foundations and Steel Structural Support									
Subtask 3.7. Building and Utilities									
Subtask 3.7.1. Balance of Plant Specifications and Modifications									
Subtask 3.7.2. Environmental Control Equipment and CO2 Capture									
Subtask 3.7.3. Waste Treatment and Disposal									
Milestone: Emissions Performance and Environmental Control Report									
Subtask 3.8. Construction and Operation Cost Estimate									
Subtask 3.8.1. Equipment Cost Estimate									
Subtask 3.8.2. Construction and Operation Schedule									

Schedule

10 MWe CDCL pre-FEED STUDY		20)17			20		2019	
		SCAL YEA	R 1	FISCAL YEAR 2				FY3	
		4/1/17 - 9/30/17)/1/2017	'-9/30/2018		10/1/18	- 3/31/19
	1 2 3	4 5 6	7 8 9	10 11 12	1 2 3	4 5 6	7 8 9	10 11 12	1 2 3
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q4	Q1
Task 4. Commercial Design & Economic Evaluation									
Subtask 4.1. Update Commercial Plant Design and Evaluation									
Subtask 4.2. Update Commercial Cost Analysis and Comparison									
Subtask 4.3. CDCL Commercialization Roadmap and Risk Assessment									
Task 5. Final Report and Close Out Documents									
Subtask 5.1. Final Report and Close Out Documents									
Pilot Demonstration Decision Point Go/No-Go									
Phase II Final Report and Close Out Documents									

Acknowledgements

This presentation is based upon work supported by the Department of Energy under the Award: DE-FE-0037654 and the Ohio Development Services Agency under the Award: OER-CDO-D-17-03.

