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Domes Are Attractive Early Storage Target
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Half of the current major point source 
emissions for the next  100 years ~7.5 GT
Resource Estimate for 3 Domes   ~5.3 GT

• Prevent trespass issues – buoyancy flow will take CO2 to top of 
dome

• Potential use as carbon warehouse – decouple anthropogenic CO2
rate from utilization rate



Kevin Structure Tops & Well Penetrations
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NW - SE Cross Section Kevin Dome
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Site Characteristics – Scientific Opportunities
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Natural CO2 production
– Opportunity to study the natural accumulation and 

long term effects
CO2 in a reactive rock

– Opportunity to study geochemical effects on both 
reservoir rock (long term fate of CO2) and caprock
(storage security)

– To accomplish this, injection should be in water leg of 
the same formation

– Still retain engineered system learnings on injection, 
transport, capacity, etc.

Duperow is a fractured reservoir with very 
secure caprock

– Opportunity to investigate impact of fracture 
permeability



Regional Water Quality Data
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Project Re-Scope
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Project Re-scope:  Maximize Learnings from Samples and Data
• Complete the core descriptive work and core flood experiments to 

characterize the pore and fracture geometry of the Duperow formation; 
• Measure the fracture-permeability of evaporite and dolomite caprock; 
• Perform laboratory measurements of seismic properties as a function of 

CO2 saturation; 
• Perform laboratory measurements of fracture-matrix flow to inform 

modeling of two-phase flow in fractured carbonate reservoir rock;
• Complete seismic processing and interpretation including use of 

quantitative interpretation techniques to determine if pore fluid differences 
in the reservoir zone can be discerned spatially without time lapse 
techniques; 

• Apply full waveform inversion to develop a high resolution velocity model; 
• Complete analysis of the geologic framework and stratigraphic architecture 

of the reservoir; 
• Produce a final geostatic model with descriptive metadata; 
• Improve phase change modeling using the production well data, assess 

applicability to leakage scenarios and CO2 / EOR storage hub concept; 



Project Re-Scope
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Project Re-scope:  Maximize Learnings from Samples and Data

Continued…

• Further develop fracture–matrix permeability interaction models incorporating 
data previously mentioned; 

• Use the dual permeability model to refine reservoir performance for fractured 
carbonate reservoirs including capacity, injectivity and storage efficiency; 

• Apply an integrated assessment model to Kevin Dome as a test case for NRAP 
tools; 

• Process and analyze the surface monitoring data, assess baseline variability; 
• Modify assessments of regional and national storage resources with information 

gained through the Kevin Dome project; 
• Capture lessons learned from the permitting, risk, and management components 

of the Kevin Dome project through continued analyses and the development of 
peer-reviewed publications and web-based applications for information sharing 
and

• Use the Kevin Dome project to illustrate unanticipated geologic scenarios 
to inform EPA’s scheduled evaluation of the UIC Class VI rule. 



Middle Devonian Paleogeography

Enlarged Devonian Paleogeography – Western U.S. by Ron Blakey, http://cpgeosystems.com/wnam.ht



Duperow Facies Model
fromRon Blakey,
http://cpgeosystems.com
/wnam.html

http://cpgeosystems.com/




Global Sea Level Curve



Duperow Facies Model



Duperow Lagoonal Facies

Laminated, organic-rich, fetid, dolomite



Evaporite dissolution/collapse breccia zone

Fetid, organic, finely-
crystalline dolomite laminites

Inter-bedded lagoonal evaporite/laminites

Nearby collapse breccia



Back-reef stromatoporoid heads washed into lagoon

Storm unit with transported 
Stomatoporoids

Fetid, laminated, 
crinkly dolomite

Interbedded dolomitic 
pelmicrites and laminated 
dolomite

Scour surface

Shoal/reef complex



Stromatoporoid reef topped by reef-flat “microbialites”



Reef Flat



Stromatoporoid dominated reef facies – Little Belt Mtns.



High Energy Shoal

Cross-bedded grainstones – Little Belt Mtns.



Deepening upward 
cycle

Laminated lagoonal mudrocks

Lagoonal mudrocks with storm debri

Reef



Site Characterization:  ELAN Analysis and Well Correlation
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Excellent correlation for wells 12.8 km apart



Geostatic Model:Refine Model Based on 
Geologic Interpretation
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Depositional Environment



Good Neural Net Match Along Core Interval
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Middle Duperow – Fractures
Site Characterization:  Core 
Fracture Analysis
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Lumicon UHC



Natural Fracture Model 

Open 
Fractur
es

Danielson Wallewein

Open natural fracture model 
of Middle Duperow (3 
Fracture Sets)

Open 
FMI 
Fracture
s

FMI 
Fractures

Seismic Ant Tracking Attribute

Potential fracture corridors (Light Blue)
Fracture Set Stereonet

Inputs Outputs

Fracture Cell
• Permeability IJK
• Porosity

Dark Blue (Open Fractures)
Light Blue (Closed Fractures)



Lithology Prediction Using Seismic Inversion

Probability Anhydrite

Probability Dolomite

Probability Limestone

Interpolated 3 Rock Types

D
anielson

W
allew

ein

3D probability lithology prediction volumes as a trend for rock type interpolation  

Rock Type Logs
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Facies, Porosity and Permeability Interpolation
3-Rock Type 8-Rock Type

Pe
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bi
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Porosity
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rm

ea
bi

lit
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Porosity

8 Rock Type model calibrated to geologist’s 
(Dave Bowen) facies log and facies model
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Int Duperow

Mid Duperow

Danielson

Wallewein



Property Interpolation (Porosity)
Potlach

Nisku

Upper Duperow

Lower Duperow
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Wallewein

Danielson

Property Interpolation (Porosity)



Extrapolates to fill 
within the Dome 
scale model 
boundary

Need for 
extrapolation of 
properties into 
larger model 
space

Wells with 
petrophysics

Dome Scale Model Property Extrapolation



Motivation for lab seismic study

• Time-lapse (4D) seismic monitoring is one of the best 
tools we have to see dynamic changes in the 
subsurface

• Most of our understanding of changes in seismic 
response due to fluid replacement and stress 
perturbation are from studies of porous sandstones.  
We have much less understanding of these effects in 
low porosity, fractured carbonate reservoirs

• Measurements in the laboratory allow us to deconvolve
complex effects of geology and gain understanding of 
the fundamental physics at play during fluid 
substitution and pressure changes

Harry Lisabeth, Jonathan Ajo Franklin



Gamma Neutron Sonic

Danielson Well (Production Pad)

Low frequency modulus/attenuation

Fluid replacement/ultrasonic characterization

Laboratory study of structure and broadband seismic 
characteristics of fractured, fluid-filled reservoir material



• Fracture shows multiscale
roughness, with undulations at 
the scale of the sample (9mm)

• Secondary fractures sub-
parallel to primary fracture are 
evident

• At 0 pressure, aperture ranges 
from 10 to 100 microns

• mCT conducted to identify 
features of natural fractures 
which differ from induced tensile 
fractures.

[Conducted at beamline 8.3.2, 
Advanced Light Source]

Synchrotron x-ray microtomography of fractured 
Duperow dolomite 



Pressure-sensitive film measurements

With increasing normal stress, asperities grow and local stresses are intensified



Low frequency measurements of Duperow dolomite

We have pushed our measurements capabilities down to 10mHz



Comparison of intact, naturally fractured and 
tensile fractured Duperow @ 8Hz

Natural fracture has lower and less pressure dependent modulus than induced 
tensile fracture, and shows greater attenuation at low normal stress.



Ultrasonic pulser

Transducer switch box

Power supply

Pore fluid pumps

Pressure vessel

Operational high pressure, flow-through 
vessel with ultrasonic measurement

Repairs and slight redesign allows for ultrasonic characterization of fluid 
replacement and pressure dependence of acoustic velocities at in-situ conditions



Initial ultrasonic results, Danielson Core (~3379 ft) 

• Well-mated fracture in Duperow dolomite from Danielson well shows surprisingly little 
pressure dependence in the ultrasonic range; substitution of liquid CO2 for brine reduces 
the pressure dependence to negligible.

• Results show smaller dependence than low F torsional shear measurements – potentially 
due to dominance of single stiff asperities in ultrasonic tests.

• Results show the challenge of seismic monitoring stiff formations with low porosity –
fracture response may be greater at lower F and for sheared fractures.

dry brine

Pressure
increases

Pp = 1500 psi, Cp = 1550 – 4000 psiP-waves

CO2
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Processing 3D, 9C siesmic Seismic

Bow Island

Lower Bow Island

Swift
Madison

Bakken

Souris River

Acoustic basement

SH surfaces



Density (g/cm3)

outside
survey 10,000 ft

10
,0

00
 ft

RHO PPSHSV Tri-Joint INV RHO PPSHPS Tri-Joint INV RHO PPSVPS Tri-Joint INV

RHO PPSH Bi-Joint INV RHO PPPS Bi-Joint INV RHO PPSV Bi-Joint INV

Duperow Horizon

RHO PPSHPSSV Quadri-Joint INV

DUPEROW RHO

Comparison at mid-Duperow horizon of the inverted density parameter obtained with different kinds 
of wavefields. bi-joint inversion (3 images at the top), tri-joint (3 images at the bottom) and quadri-
joint inversion (right). bi-joint PP-PS inversion is very similar to the final quadri-joint inversion 
(right).



Figure_12

DPHZ vs Ip_raw
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Crossplot between density porosity and computed P-wave impedance (IP) from the 
Wallewein 22-1 well over the Middle Duperow porosity interval. Note the good 
correlation observed between the two quantities. The correlation coefficient between 
the two quantities is 0.87. Colored values are measured IS values.
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measured IP values.



Transforms derived from porosity-impedance regressions using IS (left) and IP
(right) maps for the Middle Duperow porosity zone with well locations annotated 
and well derived values for porosity annotated with values derived from each map 
at well locations.



Y = 0.623x – 0.0151
R2 = 0.3771

0.085

0.053

0.02

0.085                                        0.118                                      0.15

Mid-Duperow porosity derived from average density values from quadri-joint 
inversion converted to porosity using a dolomite matrix (left) and cross plot of this 
map with values derived from IP-based regression shown in Figure 14. Note the 
poorer agreement with well values for the density-derived estimate but generally 
smaller amount of absolute variation than for that derived from the IP regression.



LANL’s 3D Reverse-Time Migration Image of 3D Kevin Dome Seismic 
Data

Lianjie Huang



LANL’s 3D Structure-Enhanced Least-Squares Reverse-Time 
Migration Image of 3D Kevin Dome Seismic Data (Further Improved 
Result)



2D slice of initial low-resolution subsurface velocity model for the Kevin 
Dome site



2D slice of LANL’s  high-resolution subsurface velocity model for 
the Kevin Dome site obtained using full-waveform inversion



Modeling of the Instrumented CO2 Production Test
at the Danielson 33-17 Well (Dec. 26-28, 2014)

July 26, 2018

Lehua Pan, Curtis M. Oldenburg, and Quanlin Zhou
Energy Geosciences Division

Lawrence Berkeley National Laboratory
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Modeling of the Instrumented CO2 Production Test
at the Danielson 33-17 Well (Dec. 26-28, 2014)

Lehua Pan, Curtis M. Oldenburg, and Quanlin Zhou
• The CO2 production test of the Danielson well in 2014 showed very 

low temperatures in the well and low CO2 production rate.
• We have simulated this production test to understand the causes 

of low T and low productivity.
• We use TOUGH2/ECO2M.
• Existing versions of ECO2M had difficulty converging during gas-

liquid phase change.
• We developed a new version of ECO2M that solves the 

convergence problems related to CO2 phase change.
• TOUGH2/ECO2M retains the lower T limit of 0 ºC because the 

module does not simulate water ice nor hydrate formation. 
• We are able to match the production test measurements if we 

assume a spatially variable permeability field. 
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Overview 

• The CO2 production test of the Danielson well in 2014 showed very low 
temperatures in the well and low CO2 production rate.

• We have simulated this production test to understand the causes of low 
T and low productivity.

• We use TOUGH2/ECO2M.

• Existing versions of ECO2M had difficulty converging during gas-liquid 
phase change.

• We developed a new version of ECO2M that solves the convergence 
problems related to CO2 phase change.

• TOUGH2/ECO2M retains the lower T limit of 0 ºC because the module 
does not simulate water ice nor hydrate formation. 

• We are able to match the production test measurements if we assume a 
spatially variable permeability field. 
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Danielson well test interval and model grid

• Radially symmetric grid (dR varies from 0.1 m near well to 100 m at R 
= 1 km).
• 2 7/8” tubing (ID = 0.062 m) and 5 ½” casing (ID = 0.124 m) are 
modeled as high-k equivalent porous media with zero capillary pressure 
and unit porosity.
• All boundaries are closed except for the top of the simulated well which 
is at the downhole gauge depth.
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CO2 is in liquid phase in the model domain 
at the start of the production test 

Pressure (bar)

D
ep

th
(ft

)

50 60 70 80

0

500
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Top P/Down
Top P/Up
Phase Interface

0.0688 bar/m

0.016 bar/m

Gas CO2

Liquid CO2

Temperature (degC)
0 10 20 30

0

500

1000

1500

2000

2500

3000

Top T/Down
Top T/Up
Phase Interface
Equilibrium T
Deep GradT
Shallow GradT

Up Gauging

Down
Gauging

Gas CO2

Liquid CO2

• Initial reservoir conditions:
• Water saturation: 0.2         
(< residual saturation)
• CO2 is in liquid phase

• This is a very challenging 
simulation problem because 
CO2 production involves 
expansion of liquid CO2 during 
phase transition to gas which 
causes cooling by both 
depressurization and latent 
heat effects.  

Measured P & T profiles in the entire well before and after the 
production test (Dec. 26-28, 2014)



56

TOUGH2/ECO2M matches field results for the case of a 
spatially varying permeability field

Rock k  (R<0.522m)
(10-18 m2)

k  (R>0.522m)
(10-18 m2)

Resv1 84.4 0.1712

Resv3 4090.0 8.296

Assumes the core-measured 
permeability only reflects a small 
local zone around the well (< 
0.522m) which is surrounded by 
much lower permeability zone 
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Spatially varying permeability

The model assumes the core-
measured permeability reflects a 
small local zone around the well (< 
0.522m) that is surrounded by a 
much lower permeability zone 

Rock k  (R<0.522m)
(10-18 m2)

k  (R>0.522m)
(10-18 m2)

Resv1 84.4 0.1712

Resv3 4090.0 8.296
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Conclusions

• The 2014 Danielson CO2 production test is challenging to simulate 
because of low initial reservoir temperature and significant cooling 
caused by phase change and decompression.

• One way to match both production rate and temperature data is to 
assume a spatially varying permeability field in which the near-well 
region has higher permeability than the far-field region.

• Drilling can induce damage in the formation near the well that could 
result in such a configuration over these same length scales.  

• Another source of low effective k could be formation of hydrate or water 
ice that plugs pore space.
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Subtask R1.5

Lab measurements of fracture-matrix 
flow to help with modeling of two-phase 

flow in fractured carbonate  

Chun Chang,Timothy J. Kneafsey, Quanlin Zhou

Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory 



CO2
invasion

Water drainage

Fracture

Subtask R1.5. Lab measurements of fracture-matrix flow to
help with modeling of two-phase flow in fractured carbonate

CO2 invasion into a fractured system and schematic of laboratory testsBackground:
To access CO2 storage capacity in rock matrix, water must drain 
through fractures and matrix. Capillary continuity allows drainage 
across fractures to neighboring matrix blocks and requires 
quantification.
Laboratory flow tests were conducted to:
1. investigate the fracture-matrix interactions; 
2. visualize processes showing the importance of capillary continuity 
to geologic carbon storage capacity. 

Rock presaturated 
with water

Capillary
Pressure
(Pc)

Capillary Ceramic

Fracture

Chun Chang,Timothy J. Kneafsey, Quanlin Zhou



Core samples and fracture types

Sample #1: Homogeneous sandstone core, Brine permeability: ~10mD, Porosity: 0.153
Sample #2: Layered sandstone core, Brine permeability: ~10mD, Porosity: 0.158
Sample #3:Low-permeability sandstone core, Brine permeability: ~1mD, Porosity: 0.135
Sample #4: Heterogeneous Duperow core (Wallewein 22-1, depth: 4129 feet), Brine permeability:

~1mD, Porosity: 0.042

Porosity

Po
si

tio
n

al
on

g
th

e
co

re
(m

m
) 0.20

0.15

0.10

Porosity 
0.20

0.15
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Porosity 
0.20

0.1

0

Porosity #1 #2 #3 #4

Fracture

 Pc-dependent capillary continuity
 Two types of capillary continuity of fracture
 Good capillary continuity



 Water saturations in fracture (Sw,f) range
from 0.73 to 0.94 for both Sample #1 and
#2 under Pc=2 and 6psi;

 Higher applied Pc results in higher CO2
saturation at steady state;

 At Pc=6psi, CO2 invasion in Sample #1 is 
faster than in Sample #2 (bedding 
perpendicular to water drainage
direction).

#1#1
Pc=
2 psi

Pc=
6 psi

#2#1

CO2-water flow with good capillary continuity across fracture

 CO2 distribution and saturation vs. time in rock matrix

2psi, #1
2psi, #2
6psi, #1
6psi, #2



CO2-water flow with Pc-dependent capillary continuity of fracture

 High capillary pressure 
causes CO2 to invade the 
fracture and lower 
continuity;

 Lower Sw,f yields slower
CO2 invasion and water
drainage;

 Matrix anisotropy 
perpendicular to water
flow direction (sample #4)
results in slower CO2 
invasion than in sample
#3 under similar Pc and
Sw,f.

27psi, #3, Sw,f=0.30
27psi, #3, Sw,f=0.44

22psi, #3, Sw,f=0.66
27psi, #3, Sw,f=0.30
27psi, #3, Sw,f=0.44

22psi, #3, Sw,f=0.66

22psi, #4, Sw,f=0.62
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Conclusions
 The capillary continuity across fractures considerably 

affects the CO2-water displacement rate and efficiency
within the observed time scale;

 The capillary continuity across fractures is Pc-
dependent and can be expressed in terms of fracture
water saturation(Sw,f);

 The displacement of water by CO2 across a matrix-
fracture system is also affected by the matrix
anisotropy.



Task R1. Core Studies: Motivation

• Assess caprock geomechanical 
properties and suitability

• Analyze fracture-permeability relations to 
inform caprock damage and leakage 
scenarios

• Determine relationship of stress 
conditions and fracture reactivation on 
permeability

• Provide input to induced seismicity 
hazard assessment



Approach: Triaxial Direct-Shear Coreflood with 
Simultaneous X-ray radiography/tomography

66

Creation of shear fractures at reservoir conditions coupled with permeability 
measurements and x-ray observations

In situ radiography Direct-shear device

Carey et al., J. Unconv. O&G  Res., 2015; Frash et al. (2016) JGR; Frash et 
al. (2017) IJGGC



Materials
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• Potlatch anhydrite—caprock at Kevin Dome, Montana
– With minor dolomite (Carey et al. 2017; ARMA)

• Upper Duperow dolomite-–caprock at Kevin Dome, Montana
– With minor anhydrite (Frash et al. 2018; ARMA)



Caprock Geomechanical Tests
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Summary of unconfined strength (150±24 
MPa) and Young’s modulus (90±10 Gpa) 
compared with shale (X) and anhydrite (    ) 
The Poisson’s ratio is 0.32±0.05. 

Anhydrite (Hangx 2010)

Potlach Anhydrite



Caprock Geomechanical Analysis
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Upper Duperow (tight carbonate) - Stronger
Potlach Anhydrite - Stiffer



Potlatch Anhydrite at 10 MPa
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Upper Duperow Dolomite at 30 MPa

71



Summary Permeability-Stress Relations
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Risk Assessment – 1st paper submitted

OVERVIEW

• Adopted the NRAP-IAM workflow from injection 
reservoir simulation to risk assessment of 
potential leakage

• Did not incorporate seismic interpretation into 
building the injection reservoir property models 
to characterize heterogeneity

• Focused on potential CO2/brine leakage through 
legacy wells

Tsubasa Onishi, Minh Nguyen, Phil Stauffer



Risk Assessment – 1st paper submitted 

Latin Hypercube Sampling



Risk Assessment – 1st paper submitted



Risk Assessment – 1st paper submitted

NRAP simulation results show that unless the quality of wellbore cement is 
extremely poor, it is unlikely that there will be CO2 leakage to the atmosphere.



Risk Assessment – 1st paper submitted
SUMMARY AND CONCLUSIONS

• The maximum total mass of injected CO2 is predicted to be 
lower than that of previous work due to different parameter 
uncertainties

• The potential amount of CO2 and brine leakage is most 
sensitive to values of fracture permeability, capillary pressure 
in both the fracture and matrix, end-point fracture CO2 relative 
permeability, permeability of confining rocks, and hysteresis in 
the CO2 relative permeability.

• Carbon storage in the Kevin Dome has little risk of CO2 
leakage to the atmosphere unless the quality of the legacy 
wells is extremely poor.



Risk Assessment – 2nd paper in progress

OVERVIEW

• Using seismic-driven property extrapolation to improve 
the injection reservoir model heterogeneity

• Incorporating a Discrete Fracture Network (DFN) model 
to characterize fractures in the Middle Duperow formation

• Focusing on potential leakage though hypothetical faults 
using NRAP-IAM



BHP Match with Well Test (Wallewein 22-1)

Grid Upscaling for Simulation

Radius around Wallewein 22-1 K Multiplier Kv/Kh Perforation Interval
3200 30 1 4040-4057

ft Dimensionless Dimensionless ft

Cell Dimensions (ft) Total Number of Cells Note
200 x 200 (Original) 5,193,900
330 x 330 1,940,449
660 x 660 480,249 Most Optimal

Risk Assessment – 2nd paper in progress

Grid upscaling is done to ensure the overall number 
of grid cells is not computationally expensive for 
simulation. Permeability around Wallewein 22-1 is 
calibrated to the injection well test. Since the 
injection interval is smaller than the total thickness of 
Middle Duperow, vertical permeability is important in 
explaining the bottomhole pressure behavior during 
well test. It is more important to match the pressure 
behavior during the beginning of well test at 
Wallewein 22-1.



PRELIMINARY RESULTS

• Well test results suggest that the radius of investigation is 
relatively small due to short duration and vertical permeability 
is important in explaining pressure response at the wellbore. 

• DFN modeling shows fracture aperture and the fracture 
intensity have a significant impact on the calculated fracture 
permeability while fracture length has a relatively minor 
impact. 

• CO2 injection simulation results indicate it is unlikely that Big 
Sky could meet its target of 1 million tons of CO2 stored in the 
Middle Duperow formation, with a lower estimated probability 
of success compared to previous estimates based on regional 
parameters.

Risk Assessment – 2nd paper in progress



US-EPA Class IV Requirements

81

Project Re-Scope: Underground Source of Drinking Water (USDW) Definition

• (40 CFR) Section 144.3 is an aquifer or part of an aquifer which:
a. supplies any public water system, or contains a sufficient quantity of ground 

water to supply a public water system and currently supplies drinking water for 
human consumption or contains fewer than 10,000 milligrams/liter of Total 
Dissolved Solids (TDS); and

b. is not an exempted aquifer.
• An "exempted aquifer" is part or all of an aquifer which meets the definition of a 

USDW but which has been exempted according to criteria in 40 CFR Section 146.4: 
1. It is mineral, hydrocarbon or geothermal energy producing, or can be demonstrated by a 

permit applicant as part of a permit application for a Class II or III operation to contain 
minerals or hydrocarbons that considering their quantity and location are expected to be 
commercially producible;

2. It is situated at a depth or location which makes recovery of water for drinking water 
purposes economically or technologically impractical;

3. It is so contaminated that it would be economically or technologically impractical to 
render that water fit for human consumption;

4. It is located over a Class III well mining area subject to subsidence or catastrophic 
collapse; 

5. The total dissolved solids content of the ground water is more than 3,000 and less than 
10,000 milligrams/liter and it is not reasonably expected to supply a public water system.



US-EPA Class IV Requirements
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USDW under Class II, but not Class VI

If the target reservoir (the Duperow) had high enough salinity, the lower 
most USDW by UIC Class VI regulations would be the Madison (~5000 
ppm TDS).
The Madison is oil producing and so is NOT a USDW under Class II 
because of exemptions
Yet to store in the Duperow beneath the Madison, the CO2 storage project 
would have to treat the Madison as a USDW.  This would mean:
• Setting surface casing through the Madison (which is karsted).  The 

larger diameter borehole would likely have less integrity.
• Wastewater disposal is permitted in the Madison, yet a storage project 

in the Duperow would have to protect it against any reduction in water 
quality

• CO2 EOR could be permitted in the Madison, yet a storage project in 
the Duperow would have to protect the Madison from CO2 intrusion 
while others intentionally inject
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US-EPA Class IV Requirements

87

CO2 EOR in Could be Permitted in Class VI USDW



US-EPA Class IV Requirements
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Regional Significance:

Oil fields producing from the 
Madison (red) and produced 
water sampled from Madison 
Group formations less than 
10,000 mg/L TDS (blue)



US-EPA Class VI Impact on Research Projects
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Class VI Scale and Cost: DOE Regional Carbon Sequestration 
Partnership Phase II Program:
• Performed 20 injections
• 100s – 100,000 tonnes
• Wide variety of geologies
• Operated under Class V, Class II
• No extended PISC 
• No Financial assurance
• Careful site characterization
• Operational monitoring

How many could have been conducted 
under Class VI?
Data strongly suggests Class VI 
requirements are overly stringent for 
smaller injections.
Restricts valuable research and may 
incentivize undesirable behavior 
commercially



90



Questions?
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Questions?



Core Flood Experiments
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 Sample 

ID 
Avg. pressure 

(psi) 
Temperature 

(°C) Brine/DI 
Duration of N2 
exposure (days) 

Duration of CO2 
exposure (days) 

Set 1 

 D69A 1400 60 Brine 5 28 
 D69B 1400 60 Brine 5 28 
 D69C 1400 60 Brine 33 0 
 W44A 1400 60 Brine 5 28 
 W44B 1400 60 Brine 5 28 
 W44C 1400 60 Brine 33 0 
 W46A 1400 60 Brine 5 28 
 W46B 1400 60 Brine 5 28 
 W46C 1400 60 Brine 33 0 

Set 2 

 D70A 1400 60 DI 5 28 
 D70B 1400 60 DI 5 28 
 D70C 1400 60 DI 5+28 (not consecutive) 0 
 D68A 1400 60 Brine 5 0 

 



Core Flood Experiments
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Methods: CO2 Core Flow Experiment

• Injection pressure: ~ 1,300 psi
• Temperature: 50˚C (122˚F)
• Test period: 3 days of pure brine flow + 14 days of brine/scCO2 flow

Much more reactive than Realistic injection scenario



Core Flow: Sampling

3292.1’1. Lagoon

Depth (ft)

3349.0’5. Tidal Flat

3410.7’6. Reef

3294.1’2. High Energy Shoal
3307.2’3. Shallow Reef front
3322.9’4. Fore Reef



Core Flow Methods: Sub-Sampling

-XRD
-XRF
-N2 adsorption

-XRD
-XRF
-N2 adsorption

A1

A2



Experimental Results

Before 
CO2

Challenge

After CO2

Challenge

High Energy Shoal:

Massive crack and see-
through wormhole are 
visible on the sample, 
indicating that the presence 
of scCO2 initiates chemical 
reactions leading to mineral 
dissolution

Reef:

Severe erosion of the 
sample and pore opening 
provide physical evidence of 
significant changes in pore 
structure and connectivity 

Lagoon:

Physical structure remains 
the same, just some 
discolorations

High Energy 
Shoal Reef Lagoon

Much more reactive than Realistic injection scenario
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NMR: Fully-saturated core
NMR: High Energy Shoal

Gas Porosity/Permeability: Dried core

• A shift towards shorter T2 times indicating either a decrease in the pore size distribution or a change in 
the mineral composition on the surface of the pores. 

• Decrease in pore size distribution is unlikely after a CO2 challenge unless new mineral is precipitated or 
CO2 is trapped in the pores, causing less water to enter the core resulting in an apparent smaller pore 
size distribution. 

• A change in the mineral composition of the surface will affect the surface relaxivity, ρ, and could 
potentially cause the shift to shorter T2 times.

• Gas φ/k: Significant increase is due to mineral dissolution



NMR: Reef
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NMR: Fully-saturated core Gas Porosity/Permeability: Dried core

• Shorter T2 population disappears after CO2 challenge.

• No significant shift is observed for the longer T2 population.

• New T2 population appears after CO2 challenge, indicates that the CO2 challenge has potentially created 
larger void spaces within the core.

• Gas φ/k: Significant increase is due to mineral dissolution



NMR: Lagoon
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were undetectable

NMR: Fully-saturated core Gas Porosity/Permeability: Dried core

• NMR signal is undetectable before and after CO2 experiment because the pores were inaccessible 

• No significant change in porosity and permeability



Sample ID

NMR Porosities (%)
Pre-CO2 Challenge Post-CO2 Challenge

RemarkFully 
saturated

1st

centrifug
e

(3,000 g)

2nd

centrifug
e

(6,000 g)

3rd

centrifug
e

(10,000 
g)

Fully 
saturated

1st

centrifug
e

(3,000 g)

2nd

centrifug
e

(6,000 g)

3rd

centrifug
e

(10,000 
g)

High 
Energy 
Shoal

(HES 1)

10.6 -- 6.2 5.4 7.6 -- -- 5.4

Shallow 
Reef Front 

(SR 1)
8.8 4.4 -- 3.8 -- -- -- --

Core was 
destroyed during 
CO2 experiment

Shallow 
Reef Front 

(SR 2)
5.3 3.8 -- 2.9 ** ** -- -- Replacement 

core for SR 1

Fore Reef 
(FR 1) 4.2 3.6 -- 3.0 *** *** -- --

Reef (R 1) 2.5 2.0 -- -- 9.0 7.6 -- --

Tidal Flat 
(T 1) 1.6 1.4 -- -- * * -- --

Lagoon 
(EL 2) No NMR Signal No NMR Signal

-- No NMR data       * NMR experiment is ongoing    
** CO2 experiment is ongoing    *** Planned CO2 experiment



• No significant change in mineralogy

XRD Mineralogy: High Energy Shoal

Pre-CO2 Post-CO2



• No significant change in mineralogy

XRD Mineralogy: Reef

Pre-CO2 Post-CO2



Post-CO2

• Dolomite in the post-CO2 core is likely present before the 
test as the well log shows 

XRD Mineralogy: Lagoon
Pre-CO2 Post-CO2



Summary

• High energy shoal, reef, and lagoon rock samples respond differently to 
supercritical CO2.

• Rapid dissolution occurs predominantly in the reef and high energy shoal 
rock cores primarily because carbonates are susceptible to dissolution in the 
presence of CO2.

• In addition to mineralogy, severity of the dissolution process is largely 
influenced by the transport properties of the rock.

• Lagoon rock sample is the most resistant to CO2 invasion mainly because it’s 
pores are inaccessible, thus ensuring it’s integrity as a caprock.
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Presentation Outline



Facies 1, 2, 3



Facies 4, 5, 6



Pre-CO2
Post-CO2

Calcite and/or 
Dolomite

Calcite and/or 
Dolomite

EDX Elemental Composition : High Energy Shoal

C
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Calcite and/or Dolomite 
and Silicon dioxide

Calcite and/or Dolomite 
and Silicon dioxide

EDX Elemental Composition : Reef

Pre-CO2 Post-CO2

C
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Anhydrite and 
Silicon dioxide

Anhydrite and 
Silicon dioxide

EDX Elemental Composition : Lagoon

Pre-CO2 Post-CO2

C
aSi
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Technical Status• Prepare as many technical status slides as needed, but recognize 
the limits of the allocated presentation time.

• Use these slides to logically walk through the project. Focus on 
telling the story of your project and highlighting the key points as 
described in the Presentation Guidelines.

• Include specific information to show how your project is 
advancing the state-of-the-art; be as quantitative as possible in 
describing improvements in the performance of your technology 
compared to the state-of-the-art. 

115



Accomplishments to Date

– Bullet List of Accomplishments (see Presentation Guidelines for 
examples). 

– Multiple slides can be used if needed.
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Lessons Learned

– Research gaps/challenges.
– Unanticipated research difficulties.
– Technical disappointments.
– Changes that should be made next time.
– Multiple slides can be used if needed.
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Synergy Opportunities

– Discuss how collaboration among projects could have a 
synergistic effect on advancing the technologies described during 
the session in which you are presenting.
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Project Summary

– Key Findings.
– Next Steps.
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Appendix

– These slides will not be discussed during the presentation, but 
are mandatory.
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Benefit to the Program 
• Identify the program goals being addressed.

• Insert project benefits statement.
– See Presentation Guidelines for an example.
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Project Overview  
Goals and Objectives• Describe the project goals and objectives in the Statement of 

Project Objectives.
– How the project goals and objectives relate to the program 

goals and objectives.
– Identify the success criteria for determining if a goal or 

objective has been met. These generally are discrete metrics 
to assess the progress of the project and used as decision 
points throughout the project.
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Organization Chart
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Organization Chart
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Gantt Chart
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Gantt Chart
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Gantt Chart
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