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Domes Are Attractive Early Storage Target

| GeovLocic Domes in MonTamA
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* Prevent treSpass ISsues — onyancy flow will take C02 to_téb_of_
dome

« Potential use as carbon warehouse — decouple anthropogenic CO,
rate from utilization rate

Bic Sky CArRBON M
SEQUESTRATION PARTNERSHIP MONTANA
STATE UNIVERSITY



Kevin Structure Tops & Well Penetrations

Kevin Dome

3631 feet Surface Elevation
Blackleaf Formation
6,259 wells penetrate the Blackleaf)
A2 feet drilling depth
(+3029 feel subsea)

Madison Formation

(849 wells penetrate the Madison)
2093 feet drilling depth
(+1538 feet subsea)

Duperow Farmation
{90 wells peneirate the Duperow)

3395 feet dnlling depth
(+236 feet subsea)
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NW - SE Cross Section Kevin Dome
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Site Characteristics — Scientific Opportunities

Natural CO, production
— Opportunity to study the natural accumulation and
long term effects

CO, in areactive rock
— Opportunity to study geochemical effects on both
reservoir rock (long term fate of CO,) and caprock
(storage security)

Lo — To accomplish this, injection should be in water leg of
\ the same formation

R

N, " — Still retain engineered system learnings on injection,

iz transport, capacity, etc.

Duperow is a fractured reservoir with very

secure caprock
— Opportunity to investigate impact of fracture
permeability

Caprock Seals
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Regional Water Quality Data
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Project Re-Scope

Project Re-scope: Maximize Learnings from Samples and Data

Complete the core descriptive work and core flood experiments to
characterize the pore and fracture geometry of the Duperow formation,;

Measure the fracture-permeability of evaporite and dolomite caprock;

Perform laboratory measurements of seismic properties as a function of
CO, saturation;

Perform laboratory measurements of fracture-matrix flow to inform
modeling of two-phase flow in fractured carbonate reservoir rock;

Complete seismic processing and interpretation including use of
guantitative interpretation techniques to determine if pore fluid differences
In the reservoir zone can be discerned spatially without time lapse
techniques;

Apply full waveform inversion to develop a high resolution velocity model;

Complete analysis of the geologic framework and stratigraphic architecture
of the reservoir;

Produce a final geostatic model with descriptive metadata;

Improve phase change modeling using the production well data, assess
Iicabilitlx to leakage scenarios and CO, / EOR storage hub concepijy

a
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Project Re-Scope

Project Re-scope: Maximize Learnings from Samples and Data

Continued...

« Further develop fracture—matrix permeability interaction models incorporating
data previously mentioned,

« Use the dual permeability model to refine reservoir performance for fractured
carbonate reservoirs including capacity, injectivity and storage efficiency;

* Apply an integrated assessment model to Kevin Dome as a test case for NRAP
tools;

* Process and analyze the surface monitoring data, assess baseline variability;

* Modify assessments of regional and national storage resources with information
gained through the Kevin Dome project;

o Capture lessons learned from the permitting, risk, and management components
of the Kevin Dome project through continued analyses and the development of
peer-reviewed publications and web-based applications for information sharing
and

 Use the Kevin Dome project to illustrate unanticipated geologic scenarios

to inform EPA’s scheduled evaluation of the UIC Class VI rule.
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Duperow Facies Model

West Dolomitized East
Limestone © Om_'t'ze Limestone
Facies
Basin Slope Fore-Reef ;gz::";":;nt Eli'gﬂ}iﬁgg :;;Oa” Lagoon Tidal Flat

LT _J.__fJ.:J.J_J.
---------

Microbial Mudtone/

Boundstone Wackestone/Packstone
Peloid and Amphipora

Packstone/Grainstone

Stromatoporoid Peloid and Amphipora
Wackestone Packstone/Wackestone

hi q Packstone
Brachiopo Stromatoporoid
Wackestone Packstone/

Mudstone Grainstone


http://cpgeosystems.com/

.- - . o - -

S lbeeDe @ owaro O

Danielson 33-17 [MD] 1618309 ftUS = WALLEWEIN 22-1 [MD]
MD GR NPOR_DOL MD RHOZ
1:1404 |0.00 gAPl 100.00] 2300000 =23 0 100000 Bound_WWater_combineri 1:1404 (000 )| 2.2950 GIfC3 3.035
Core GRTO RHOZ iR et s | NPOR DOL
) 27665 i — . . = __[z53a : S
Three Forks < ] S e ma—— 1
500 i id — p
Potlatch ] e ]
] 3700
2900 == ] :
1 g_ ' 1 o
R T b q e
MNisku & ] L:% ! 3800 |5
3000 T—% ] ‘ _
pper_Duperow ] --—:; ] ‘ =
] == 1
{1 == - 3900 T
3100 —1—3 ] |
1= |
1 1=l g 4000
1 =
3200 I
=<
Core Top 5 gi | '1_» 4100
diddle_Duperow 7300 | ] L
] 'i
] | 1 =
] 4200 i
- 4 < |
3400 b :
Core Bottom . ]
] 4300
3500 ] ;
] % ] L'
ower_Duperow 151 - 2 ]
] } I i 4400
3600 ] .
] g ] 1|
ELAN Analysis 3 { _ i i -\ 2 ;
and 5 -~ = | A 4500 =
o] £ : i
Well 1 == S S : 7
Correlation 3786.94 | [ 4594.9] g




Global Sea Level Curve
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Duperow Facies Model
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Duperow Lagoonal Facies

Laminated, organic-rich, fetid, dolomite
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Inter-bedded lagoonal evaporite/laminites

ganlc fll’%l %
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Back-reef stromatoporoid heads washed into lagoon
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Stromatoporoid reef topped by reef-flat “microbialites”
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Stromatoporoid dominated reef facies — Little Belt Mtns.
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High Energy Shoal

Cross-bedded grainstones — Little Belt Mtns.
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Deepening upward
cycle

Lagoonal mudrocks with storm debri

Laminated lagoonal mudrocks
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Site Characterization: ELAN Analysis and Well Correlation

PIGE_Combingd [D]

KINT_Geo_Combined [U]

31478
3160

3180
3200
Middle_Duperow
3220

3240

3260

Middle_Duperow B —

3320

itermediate_Duperow 33560

1:506 (0.0000 Tty 0.2000|0 mD
PIGE_Combined [U] 335 Permeabilty Net Stres=400 PEID}
0.0000 M3 0.2000(0 mD

0.0000

- Ambient Porosity (%) -
ftaftd

20.0000

KINT_Geo_Combined [D]

[ 4l

3380

34252

Bic Sky CARBON

SEQUESTRATION PARTHMERSHIP

Excellent correlation for wells 12.8 km

26944 ftUS —n

& Wallewein 22-1 {Injector) [MD]

I
1l

3962.8

Middle_Duperow

4080

4100

tpMiddle_Duperow B

4140

4160

4180 I

- Intermediate_ Duperoy

4200

4220

42402 i__

MONTANA 24



Schiumberger
Garbon Services

Geostatic Model:Refine Model Based on
Geologic Interpretation

Depositional Environment
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Good Neural Net Match Along Core Interval| ™

Garbon Services
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Middle Duperow — Fractures

Site Characterization: Core
Fracture Analysis
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Natural Fracture Model
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Lithology Prediction Using Seismic Inversion

3D probability lithology prediction volumes as a trend for rock type interpolation

Rock Type Logs

Probability Anhydrite

Interpolated 3 Rock Types
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Facies, Porosity and Permeabillity Interpolation

3-Rock Type
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Dome Scale Model Property Extrapolation
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Motivation for lab seismic study ceeerf

BERKELEY LAB

Harry Lisabeth, Jonathan Ajo Franklin

 Time-lapse (4D) seismic monitoring is one of the best
tools we have to see dynamic changes in the
subsurface

 Most of our understanding of changes in seismic
response due to fluid replacement and stress
perturbation are from studies of porous sandstones.
We have much less understanding of these effects in
low porosity, fractured carbonate reservoirs

 Measurements in the laboratory allow us to deconvolve
complex effects of geology and gain understanding of
the fundamental physics at play during fluid
substitution and pressure changes
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Laboratory study of structure and broadband seismic  § F\I ;
characteristics of fractured, fluid-filled reservoir material e

Danlelson Well (Productlon Pad)
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Synchrotron x-ray microtomography of fractured F\I :
Duperow dolomite BERKELEY LAB

* Fracture shows multiscale
roughness, with undulations at
the scale of the sample (9mm)

« Secondary fractures sub-
parallel to primary fracture are
evident

« At O pressure, aperture ranges
from 10 to 100 microns

« mCT conducted to identify
features of natural fractures
which differ from induced tensile
fractures.

[Conducted at beamline 8.3.2,
Advanced Light Source]
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Pressure-sensitive film measurements

1.5 MPa i 4.5 MPa BERKELEY LAB

500
400 400
300 300
200 200

100 100

100 200 300 400 500 100 200 300 400 500

6.7 MPa 1.5 MPa, unloading

500 500

400 400
300 300
200 200

100 100

100 200 300 400 500 100 200 300 400 500

With increasing normal stress, asperities grow and local stresses are intensified
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Low frequency measurements of Duperow dolomite '\| i??|

10mHz BERKELEY LAB
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We have pushed our measurements capabilities down to 10mHz
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Comparison of intact, naturally fractured and ’\l ;

tensile fractured Duperow @ 8Hz BERKELEY LB
250 o | | 0.15 | | O intact
© © O natural
§20 o = | O tensile
S4 S 0.1
215 o | g %ﬁ
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Natural fracture has lower and less pressure dependent modulus than induced
tensile fracture, and shows greater attenuation at low normal stress.
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Operational high pressure, flow-through ’\l ;
vessel with ultrasonic measurement  ESSSEC

R R — T =

PARS INSTRUMENT COMPANY

Power supply EEEEEn B HGHPRESSURES g§ '
y - ——— Pore fluid pumps

Repairs and slight redesign allows for ultrasonic characterization of fluid
replacement and pressure dependence of acoustic velocities at in-situ conditions
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Initial ultrasonic results, Danielson Core (~3379 ft) ’\| i“|

BERKELEY LAB

P-waves Pp = 1500 psi, Cp = 1550 — 4000 psi

« Well-mated fracture in Duperow dolomite from Danielson well shows surprisingly little

pressure dependence in the ultrasonic range; substitution of liquid CO, for brine reduces
the pressure dependence to negligible.

* Results show smaller dependence than low F torsional shear measurements — potentially
due to dominance of single stiff asperities in ultrasonic tests.

* Results show the challenge of seismic monitoring stiff formations with low porosity —
fracture response may be greater at lower F and for sheared fractures.
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. Vecta

Processing 3D, 9C siesmic Seismic

Oil & Gas Ltd.

Bow Island

-

Swift

Bakken
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Comparison at mid-Duperow horizon of the inverted density parameter obtained with different kinds
of wavefields. bi-joint inversion (3 images at the top), tri-joint (3 images at the bottom) and quadri-
joint inversion (right). bi-joint PP-PS inversion is very similar to the final guadri-joint inversion

(right).
3 P z DUPEROW RHO

RHO PPSVPS Tri-Joint INV

Density (g/cm?3)
vecla

Duperow Horizon
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Crossplot between density porosity and computed P-wave impedance (IP) from the
Wallewein 22-1 well over the Middle Duperow porosity interval. Note the good
correlation observed between the two quantities. The correlation coefficient between

the two quantities is 0.87. Colored values are measured IS values. Vacta
DPHZ vs Ip_raw V
o Color Key
L1 ARNNERN | | Is_raw i Gas L
N (ft/s).(g/cm?3)
o
32797
31769
Lo
A 30741
o
e 29713
=
o 28684
@
= o 27656
o
E 26628
% 25600
10 24571
S e
L 23543
J Ik 22515
o & it
10000 45000 50000 55000 60000
Ip_raw (ft/s).(g/cm?3)
El;glﬂrﬂlcﬁ CARBON M
SE ESTEATION PARTNERSHIP MONTANA

STATE UNIVERSITY



Crossplot of measured density porosity and S-wave impedance (1S) in Wallewein
22-1 well in mid-Duperow porosity zone. Note excellent agreement between
measured two quantities with correlation coefficient of 0.89. Colored values are

measured IP values. DPHZ vs Is_raw Color Key et
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Transforms derived from porosity-impedance regressions using IS (left) and IP -
(right) maps for the Middle Duperow porosity zone with well locations annotated

and well derived values for porosity annotated with values derived from each map
at well locations.
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vecia

Mid-Duperow porosity derived from average density values from quadri-joint
inversion converted to porosity using a dolomite matrix (left) and cross plot of this ==
map with values derived from IP-based regression shown in Figure 14. Note the
poorer agreement with well values for the density-derived estimate but generally
smaller amount of absolute variation than for that derived from the IP regression.
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NATIONAL LABORATORY
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o,

LANL’s 3D Structure-Enhanced Least-Squares Reverse-Time . Los Alamos

Migration Image of 3D Kevin Dome Seismic Data (Further Improved — ®rmons: wasonaron
Result)

Depth (km)
N
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2D slice of initial low-resolution subsurface velocity model for the Kevin ﬂ)

NATIONAL LABORATORY

Receiver Inline Position (km)
1 2 i 4
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2D slice of LANL’s high-resolution subsurface velocity model for ﬁ)

the Kevin Dome site obtained using full-waveform inversion » Los Alamos

Receiver Inline Position (km)
1 2 i 4
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BERKELEY LAB

Modeling of the Instrumented CO, Production Test
at the Danielson 33-17 Well (Dec. 26-28, 2014)

Lehua Pan, Curtis M. Oldenburg, and Quanlin Zhou
Energy Geosciences Division
Lawrence Berkeley National Laboratory
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Modeling of the Instrumented CO, Production Test F\I A
at the Danielson 33-17 Well (Dec. 26-28, 2014) RERKELEY LAB

Lehua Pan, Curtis M. Oldenburg, and Quanlin Zhou

 The CO, production test of the Danielson well in 2014 showed very
low temperatures in the well and low CO, production rate.

 We have simulated this production test to understand the causes
of low T and low productivity.

 We use TOUGH2/ECO2M.

o Existing versions of ECO2M had difficulty converging during gas-
liquid phase change.

« We developed a new version of ECO2M that solves the
convergence problems related to CO, phase change.

e TOUGH2/ECO2M retains the lower T limit of 0 °C because the
module does not simulate water ice nor hydrate formation.

« We are able to match the production test measurements if we
assume a spatially variable permeability field.
52
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Overview ol

BERKELEY LAB

« The CO, production test of the Danielson well in 2014 showed very low
temperatures in the well and low CO, production rate.

« We have simulated this production test to understand the causes of low
T and low productivity.

e We use TOUGHZ2/ECO2M.

« Existing versions of ECO2M had difficulty converging during gas-liquid
phase change.

« We developed a new version of ECO2M that solves the convergence
problems related to CO, phase change.

e TOUGH2/ECO2M retains the lower T limit of O °C because the module
does not simulate water ice nor hydrate formation.

« We are able to match the production test measurements if we assume a
spatially variable permeability field. 53
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Danielson well test interval and model grid ceceenf

BERKELEY LAB

prescribed mass production rate or P&T

Broiig G caprock —

_Resv1 (interval 1)
high-k

]
we Resv2

Model domain L
(3178-3336 ft) —— P

Resv3 (interval 10)

§
?

= on_ |
— 32N

s
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:uhdérlying |

id§ Duf
L4
8
=
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28y
i

 Radially symmetric grid (dR varies from 0.1 m near well to 100 m at R
=1 km).

« 2 7/8" tubing (ID = 0.062 m) and 5 %2” casing (ID = 0.124 m) are
modeled as high-k equivalent porous media with zero capillary pressure
and unit porosity.

 All boundaries are closed except for the top of the simulated well which

Is at the downhole gauge depth. e
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CO, is in liguid phase in the model domain R
at the start of the production test

BERKELEY LAB

T T * Initial reservoir conditions:
- - « Water saturation: 0.2
S0 S0 (< residual saturation)
! h * CO, is in liquid phase
B B \ Up Gauging
lOOOT lOOOT
- |\ ; \ » This is a very challenging
< 1500 oo ' simulation problem because
g | [ Gauging CO, production involves
2000} 2000 expansion of liquid CO, during
B Gas CO, B Gas CO, - .
e N XS F uawies T YT T phase transition to gas which
2500f~ 0,068 bar/m 25001 oo causes cooling by both
i TEZC ”l;” depressurization and latent
| p———a— Top P/Down | [~ Equilibrium
30001 = = = ;ﬁggfgerface 3000~ oo T heat effects.
| \5'0\ | | \GIO\ | | \7'0\ | | 80 0 | | | | 1|0 | | | | 2|0 | | 30
Pressure (bar) Temperature (degC)

Measured P & T profiles in the entire well before and after the
production test (Dec. 26-28, 2014)

55
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TOUGH2/ECO2M matches field results for the case of S ii?|

spatially varying permeability field

Known PT@3179'_varK

-
o
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N W EeN g ~ 0 o
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107 10

L.l Il L L
10°

Time (hr)

10’

Assumes the core-measured
permeability only reflects a small
local zone around the well (<
0.522m) which is surrounded by
much lower permeability zone

Bic Sky Car

SEQUESTRATION PARTHN

BON

ERSHIP

130

N
w

-
(8]

S
Temperature (°C)

L L
1
a

N
o

Production rate (kg/s)

Resvl

Resv3

107

BERKELEY LAB

Known PT@3179'_vark
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----- Simulated
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Spatially varying permeability F\| :

BERKELEY LAB

Well ~—
The model assumes the core-

measured permeability reflects a
small local zone around the well (<
0.522m) that is surrounded by a
much lower permeability zone

Rock k (R<0.522m) | k (R>0.522m)
(10-18 mZ) (10-18 mz)
Resvl 84.4 0.1712

Resv3 4090.0 8.296

57
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Conclusions F\I '

BERKELEY LAB

 The 2014 Danielson CO, production test is challenging to simulate
because of low initial reservoir temperature and significant cooling
caused by phase change and decompression.

« One way to match both production rate and temperature data is to
assume a spatially varying permeability field in which the near-well
region has higher permeability than the far-field region.

* Drilling can induce damage in the formation near the well that could
result in such a configuration over these same length scales.

 Another source of low effective k could be formation of hydrate or water
ice that plugs pore space.

Well ~

58
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Subtask R1.5

Lab measurements of fracture-matrix
flow to help with modeling of two-phase
flow In fractured carbonate

Chun Chang,Timothy J. Kneafsey, Quanlin Zhou

Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory
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Subtask R1.5. Lab measurements of fracture-matrix flow to ,’,’,}l m
help with modeling of two-phase flow in fractured carbonate
Chun Chang,Timothy J. Kneafsey, Quanlin Zhou

Fracture Rock presaturated

with water

Capillary
Pressure

(Pc)

CO,
invasion

Water drainage Capillary Ceramic

Backg round: CO, invasion into a fractured system and schematic of laboratory tests

To access CO, storage capacity in rock matrix, water must drain
through fractures and matrix. Capillary continuity allows drainage
across fractures to neighboring matrix blocks and requires
guantification.

Laboratory flow tests were conducted to:

1. investigate the fracture-matrix interactions;

2. visualize processes showing the importance of capillary continuity

to geologic carbon storage capacity.
Bic Sky CARBON M
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Core samples and fracture types
P L

“* Two types of capillary continuity of fracture
» Good capillary continuity » P.dependent capillary continuity

Porosity

0.13 0.132 0.134 0.136 0.138 0.14 0.00 0.02 0.04 006 0.08 0.10

S 0
£ 8 Porosity

0.14 0.145 0.15 0.155 0.16 0.14 0.15 0.16 0.17 0.18
I L

.7 Porosity

Porosity
.20

10

20

30

40

50
50

60
60

70
70

Position along the core (mm)

80

Fracture

90

e,
*
p
4
LA
h 3 >
L] A“‘
100 ,—|

» Sample #1: Homogeneous sandstone core, Brine permeability: ~10mD, Porosity: 0.153

» Sample #2: Layered sandstone core, Brine permeability: ~10mD, Porosity: 0.158

» Sample #3:Low-permeability sandstone core, Brine permeability: ~1mD, Porosity: 0.135

» Sample #4: Heterogeneous Duperow core (Wallewein 22-1, depth: 4129 feet), Brine permeability:
~1mD, Porosity: 0.042
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CO,-water flow with good capillary continuity across fracture ’\l

f(rroeeee ‘m

% CO, distribution and saturation vs. time in rock matrix

6h 12h 56h 120h 3h 6h 36h 78h
Scoz Sgm
i 1.0
Hom 0.50
0 0
Porosity Porasity
0.20 0.20
wu.w 0.15
: 0.12 ' . 0.10
10min 2h 43h il 10min 1.5h 155h Porosity
0.6 i I
R oo B 2psi #1 » Water saturations in fracture (S, ;) range
0.5 4 &* O 2psi, #2 from 0.73 to 0.94 for both Sample #1 and
<& i c
o lo W #2 under P,=2 and 6psi;
*° ’ > Higher applied P, results in higher CO,

saturation at steady state;
» At P.=6psi, CO, invasion in Sample #1 is

CO, saturation

O : :
faster than in Sample #2 (bedding
B perpendicular to water drainage
0 50 100 150 200 250 300 direction).
Time (hrs)
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CO,-water flow with P.-dependent capillary continuity of fracture ’\l A
rrreeer ‘m

0.4 - - : :
035 | el @ | % High capillary pressure
03 AN, SRSl L T causes CO, to invade the

27psi, #3, Swf_o 44 fracture and lower
s ’ continuity:;

Lower S, ;yields slower

CO, invasion and water

drainage;

0.25

2 saturation
(=
N

0.15

O o1
© 0.05 Matrix anisotropy
' perpendicular to water
° : i | : flow direction (sample #4)
0. 05 | ' ' | results in slower CO,
ime (h 100 1000 invasion than in sample
#3 under similar P, and
... Sw,f.
264h 1222h 956h
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Conclusions e |

*» The capillary continuity across fractures considerably
affects the CO,-water displacement rate and efficiency
within the observed time scale;

% The capillary continuity across fractures is P_-
dependent and can be expressed in terms of fracture
water saturation(S,, ;);

“ The displacement of water by CO, across a matrix-
fracture system is also affected by the matrix
anisotropy.
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Task R1. Core Studies: Motivation

/ﬂ""\'

e Assess caprock geomechanical 'Los Alamos
properties and suitabllity

* Analyze fracture-permeability relations to
Inform caprock damage and leakage
scenarios

 Determine relationship of stress
conditions and fracture reactivation on
permeabllity

* Provide input to induced seismicity
hazard assessment

Bic Sky CARBON M
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Approach: Triaxial Direct-Shear Coreflood with A
» Los Alamos

Simultaneous X-ray radiography/tomography

. . Direct-shear device
In situ radiography |

Uniferm axial (2) displacement < Wire tourniguet
v Fixed lateral (xy) displacement

Thrust collar (Pisten)

Pore fluid conduit

t+— Flowpath splitter
30mm path s

VoV oy L | feFEPsieeve

\
254mm i L 3
\ Y y — Specimen
[ T 25.4 mm 2

— Permeable frit

—E U-shaped channe

t— Silicone rubber

18.8 mm

Creation of shear fractures at reservoir conditions coupled with permeability
measurements and x-ray observations

Carey et al., J. Unconv. O&G Res., 2015; Frash et al. (2016) JGR; Frash et

al. (2017) IJGGC
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Materials o2 Alamos

NATIONAL LABORATORY

» Potlatch anhydrite—caprock at Kevin Dome, Montana

— With minor dolomite (Carey et al. 2017; ARMA)
 Upper Duperow dolomite-—caprock at Kevin Dome, Montana
— With minor anhydrite (Frash et al. 2018; ARMA)

\ 5P
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Caprock Geomechanical Tests LoiAlamos

HATIOMNAL LABORATORY

180 O X B
160 qq’g " ®
S .
sz? x X x Potlach Anhydrite ®
~ 140 \& X X
A W X
2120 o x; Aot Ko X X
% 100 + X x x % ,;‘ .( Anhydrite (Hangx 2010)
2 X X X
) X X X X
% 80 X XX . X X
- X Xy
60 "xﬁ“x X
, Summary of unconfined strength (150+£24
40 X X X x
X MPa) and Young’'s modulus (90+£10 Gpa)
20 g‘ < 1 compared with shale (X) and anhydrite (@)
0 X X x The Poisson’s ratio is 0.32+0.05.
0 20 40 60 80 100 120

Young's Modulus (GPa)

X Shale data Chang et al. (2006) @ Anhydrite data Hangx et al. (2010)

®BAOI - Vertical - 3687 ft B BAQ2 - Horizontal - 3687 ft



Caprock Geomechanical Analysis

350 A
. _ )
A Upper Duperow (tight carbonate) - Stronger ”Los Alamos
300 O Potlach Anhydrite - Stiffer '
5250 A
=8
=
= 200 T
o0
=
E Fa u
=150 T
7]
A A
O
= 100
A
50 —
Mechanical Break
Outlier
0
0 20 40 60 80 100 120

Tangent Modulus (GPa)

BAOI - Vertical - 3687 ft BAO2 - Horizontal - 3687 ft ©“ BAO3 - Vertical - 3689 ft
OBA Mean A BDOI - Horizontal - 3940 ft ~ BD02 - Vertical - 3940 ft

ABD Mean



Potlatch Anhydrite at 10 MPa

BAD5-05:
0.1 MPa Effective Confining

320.00 min

Bic Sky CARBON
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Direct Shear Stress
(MPa)
et

Aperture
(mm)

Permeability
(mD)

aﬁ)s Alamos
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Upper Duperow Dolomite at 30 MPa {2 atamos

NATIONAL LABORATORY

ANS01-04:
2.8 MPa Effective Confining

285.00 min

Direct Shear Stress

Permeability

=

|‘1

e e

20

100 150 200

150 200 250 300

100

T

100 150 200 300

Test Time (min)

250
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Summary Permeability-Stress Relations 1o} aamos

AAAAAAAAAAAAAAAAAA

1000 -

=>~-Duperow Dolomite

—
100 K ‘i\ =& Anhydrite

0.01 \
0.001 [ [ [ [ [ |

0 5 10 15 20 25 30

Confining Pressure (MPa)
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Risk Assessment — 15t paper submitted 2 alamos
Tsubasa Onishi, Minh Nguyen, Phil Stauffef_ o

OVERVIEW

* Adopted the NRAP-IAM workflow from injection
reservoir simulation to risk assessment of
potential leakage

* Did not incorporate seismic interpretation into
building the injection reservoir property models
to characterize heterogeneity

e Focused on potential CO2/brine leakage through
legacy wells
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Risk Assessment — 15t paper submitted o2 Alamos

NATIONAL LABORATORY

ket

Pcm

Pt
krfCO2end
kconiock
Hyst
sigma

km

kol
sainity
kvkh ®low =High
krmCO2end

-500 0.0 500
Sensitiviy

Identify Sensitive Parameters Latin Hypercube Sampling

ROM#1 ROM#2 ROM#3

Reservoir Simulation

NRAP-IAM RROM-Gen

The risk assessment workflow using the reservoir simulation, RROM-Gen and NRAP-IAM
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Risk Assessment — 15t paper submitted

Total CO, Injected (MT)

0 3.0 6.0
Time (Year) BT I

log(k) [m2]: -14 -135 -13 -125

CO, Relative Permeability (-)

Capillary Pressure (bar)

-]

/A
a L?s Alamos

NATIONAL LABORATORY

06

05

04

Line: Drainage
Dash: Imbibition

03 N

v
0z

o

=

o

il s I
04 o8 [1] or o8 (1]

Brine Saturation (-)

T
I

®

il Line: Pcf
A\ Dash: Pcm

s

3

L 1 1 L 1
04 0s 06 or oB o8

Brine Saturation (-)

Reservoir simulation results: total amount of CO, injected delineated with P10, P50 and P90
probability ranges. Different colors in right-hand figures correspond to P10, P50, and P90 in the left-hand figure.
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Risk Assessment — 15t paper submitted

0.2

—Very Bad (50.0 Darcy=5.00e-11 m2)

—Bad (10.0 Darcy=9.87e-12 m2)

—0Ok (1.0 Darcy=9.87e-13 m2)

b Good (0.1 Darcy=9.87e-14 m2)
—Very Good (0,001 Darcy=9.87e-15 m2)

0.15 H

CO2 Leakage Rate to Atmosphere (%)

CO, Relative Permeability (-)

Time (year)

Capillary Pressure (bar)

o
~

o
[

e
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o
»
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» Los Alamos

HNATIONAL LABORATORY

LY Line: Drainage
\ Dash: Imbibition
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3 04 68 ©6 07 o8 09
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n
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1 I 1 L MPrwres =
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o™

log(k) [m2]:

High Permeability
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-

w
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o

\
\

~

S
e

Matrix

Y
o7 (] [T]

3

L L Il
04 05 [T}

Brine Saturation (-)

Reservoir simulation results including total amount of CO; injected and parameters for P10, P50
and P90. The dashed line shows a 0.01% leakage rate. Right-hand figures illustrate parameters of

realizations that showed unacceptable leakage.

NRAP simulation results show that unless the quality of wellbore cement is
extremely poor, it is unlikely that there will be CO2 leakage to the atmosphere.
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Risk Assessment — 15! paper submitted 02 alamos

SUMMARY AND CONCLUSIONS

« The maximum total mass of injected CO2 is predicted to be
lower than that of previous work due to different parameter
uncertainties

« The potential amount of CO2 and brine leakage is most
sensitive to values of fracture permeability, capillary pressure
In both the fracture and matrix, end-point fracture CO2 relative
permeability, permeability of confining rocks, and hysteresis in
the CO2 relative permeability.

e Carbon storage in the Kevin Dome has little risk of CO2
leakage to the atmosphere unless the quality of the legacy
wells Is extremely poor.
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Risk Assessment — 2nd paper in progress . EpgAIampg

OVERVIEW

e Using seismic-driven property extrapolation to improve
the injection reservoir model heterogeneity

» Incorporating a Discrete Fracture Network (DFN) model
to characterize fractures in the Middle Duperow formation

e Focusing on potential leakage though hypothetical faults
using NRAP-IAM
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Risk Assessment — 2"d paper in progress ;ﬁ’sAlamos

NATIONAL LABORATORY

Grid Upscaling for Simulation

ell D e O Ota per o e ole
200 x 200 (Original) 5,193,900
330 x 330 1,940,449
660 x 660 480,249|Most Optimal

PERMX_300_100
Permeability T [mD]

100000.0000

oo BHP Match with Well Test (Wallewein 22-1)

1000.0000

. 100.0000

Wallewein 22-1 Bottom Hole Pressure (BHP) vs Time

10.0000
7000

~1.0000

BOO0

5000

* Observed BHP
—Simulation BHP

= A000
2]
a

Grid upscaling is done to ensure the overall number
of grid cells is not computationally expensive for 2000 _
simulation. Permeability around Wallewein 22-1 is |-
calibrated to the injection well test. Since the
injection interval is smaller than the total thickness of |
Middle Duperow, vertical permeability is important in o 2%
explaining the bottomhole pressure behavior during Time (hr)

well test. It is more important to match the pressure

1000

behavior durina the bedinnina of well test at Radius around Wallewein 22-1 = K Multiplier Kv/Kh Perforation Interval
g g 9 3200 30 1 4040-4057

Wallewein 22-1. ft Dimensionless | Dimensionless ft
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Risk Assessment — 2" paper in progress - LosAlamos

NATIONAL LABORATORY

PRELIMINARY RESULTS

* Well test results suggest that the radius of investigation Is
relatively small due to short duration and vertical permeability
IS Important in explaining pressure response at the wellbore.

« DFN modeling shows fracture aperture and the fracture
Intensity have a significant impact on the calculated fracture
permeability while fracture length has a relatively minor
Impact.

e COZ2 injection simulation results indicate it is unlikely that Big
Sky could meet its target of 1 million tons of CO2 stored in the
Middle Duperow formation, with a lower estimated probabillity
of success compared to previous estimates based on regional
parameters.
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US-EPA Class IV Requirements

Project Re-Scope: Underground Source of Drinking Water (USDW) Definition

e (40 CFR) Section 144.3 is an aquifer or part of an aquifer which:

a. supplies any public water system, or contains a sufficient quantity of ground
water to supply a public water system and currently supplies drinking water for
human consumption or contains fewer than 10,000 milligrams/liter of Total
Dissolved Solids (TDS); and

b. Is not an exempted aquifer.

« An "exempted aquifer" is part or all of an aquifer which meets the definition of a
USDW but which_has been exempted according to criteria in 40 CFR Section 146.4:

1. Itis mineral, hy arﬂ@} or geothermal energy producing, or can be demonstrated by a
permit applicant as part.o é@ﬁrmit application for a Class Il or Il operation to contain
minerals or hydrocarbons that @mgidering their quantity and location are expected to be
commercially producible; ’70'@

2. ltis situated at a depth or location whi es recovery of water for drinking water
purposes economically or technologically ré@’tigal;

3. Itis so contaminated that it would be economic %’F@Q/chnologically impractical to
render that water fit for human consumption; O Sy

4. Itis located over a Class Ill well mining area subject to su icfé'?@g or catastrophic
collapse; s Cs
5. The total dissolved solids content of the ground water is more than 3; 06 and less than
Bic Smmggsmnslliter and it is not reasonably expected to supply a pub ater system.

SEQUESTRATION PARTHN HIPF




US-EPA Class IV Requirements

USDW under Class Il, but not Class VI

If the target reservoir (the Duperow) had high enough salinity, the lower
most USDW by UIC Class VI regulations would be the Madison (~5000

ppm TDS).

The Madison is oil producing and so is NOT a USDW under Class Il
because of exemptions

Yet to store in the Duperow beneath the Madison, the CO, storage project
would have to treat the Madison as a USDW. This would mean:

» Setting surface casing through the Madison (which is karsted). The
larger diameter borehole would likely have less integrity.

» Wastewater disposal is permitted in the Madison, yet a storage project
In the Duperow would have to protect it against any reduction in water

quality

* CO, EOR could be permitted in the Madison, yet a storage project in
the Duperow would have to protect the Madison from CO, intrusion

while others intentionally inject

Bic Sky CArRBON M
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Produced Water and Madison Formation Oil & Gas Fields in and around the BSCSP Region
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Produced Water and Madison Formation Oil & Gas Fields in and around the BSCSP Region
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Produced Water and Madison Formation Continuity in and around the BSCSP Region

1 - B ST
"’ o e B

. % *s e USGS Produced Water
= = « TDS < 10k ppm
5 B, » TDS > 10k ppm
[}

. Madison Formation Extent
e {Bureau of Economic Geology)

1] 50 100
Miles
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Aquifer Exemptions under EPA Safe Drinking Water Act UIC regulations

L= gy

W

EPA Aquifer Exemptions

I All Exemptions
B Madison Exemptions

Bic Sky CARBON
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US-EPA Class IV Requirements

CO, EOR in Could be Permitted in Class VI USDW

- 4
0 25 5
- Mules
| © o &
e
& L
b =
| ELE L N 2w ‘ ™ 1
I | J ™ W TN W I IE muzE 9 o
‘ ‘ * %
L L .,
; - | I 1 % |
|
£ 3 ‘
| S e 0 2w BN TW TN IE | e -
c ‘
‘ ‘.ggb I
Lo+
is Legend 5
EOR wells i T ™ BN E =N 2E £ T
o Other
Top Companies m
® MCR.LLC
© Quickeilver Resources, Inc T
[l @ Somont OF Company, Inc
® Stone Energy LLC o
@ Union Qil Company Of Calfoma |, 5, = P N g“,g i
] Kevin Project il
Townships L+
Toole County
<o -~ il
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US-EPA Class IV Requirements

Regional Significance:

Oil fields producing from the
Madison (red) and produced
water sampled from Madison
Group formations less than
10,000 mg/L TDS (blue)

| :
M Madison Group Oil & Gas Fields * P

. Madison Group Produced Waters. 3
| F1
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US-EPA Class VI Impact on Research Projects

DOE Regional Carbon Sequestration
Partnership Phase Il Program:

« Performed 20 injections
e e « 100s — 100,000 tonnes

. Coal seam
O 0il & Gas bearing
O Saline formation
. Basalt formation

Class VI Scale and Cost:

» Wide variety of geologies

» Operated under Class V, Class Il
* No extended PISC

* No Financial assurance

» Careful site characterization

» Operational monitoring

How many could have been conducted
under Class VI?

Data strongly suggests Class VI
requirements are overly stringent for
s smaller injections.

Restricts valuable research and may
incentivize undesirable behavior

Bic Sky CArRBON commercially M
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Core Flood Experiments

Sample | Avg. pressure | Temperature Duration of N2 Duration of CO2
ID (psi) (°C) Brine/DlI exposure (days) exposure (days)
D69A 1400 60 Brine 5 28
D69B 1400 60 Brine 5 28
D69C 1400 60 Brine 33 0
WA44A 1400 60 Brine 5 28
Setl W44B 1400 60 Brine 5 28
W44C 1400 60 Brine 33 0
WA46A 1400 60 Brine 5 28
W46B 1400 60 Brine 5 28
W46C 1400 60 Brine 33 0
D70A 1400 60 DI 5 28
Set 2 D70B 1400 60 DI 5 _ 28
D70C 1400 60 Dl 5+28 (not consecutive) 0
D68A 1400 60 Brine 5 0
G Sky CARBON M
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Core Flood Experiments

Segments A, B, and C Porosity

o
£
£ 12.00
c
S 10.00
2 8.00
S
S 6.00
o)
> 4.00
g 2.00
£ 0.00
$

W44A W44B W44C W46A WA46B D69A D69B D69C D70A D70B

HPre-rXn mPost-rXn

Segments A, B, and C Porosity Change

20.00
15.00

10.00

1
W44A W44B W44C WiGA W46B DﬁQA D%QB DGIQC D7|0A DiOB

pressure)

-5.00

% Change in % Porosity (1000 psi confining

Bic Sky CARBON

SEQUESTRATION PARTHMERSHIP -10.00




Methods: CO: Core Flow Experiment

Much more reactive than Realistic in dJection scenario
Brine and CO: Fluid sampling

N. tank BUIRBE e Core holder

k‘ i

accumulator . _ exchanger

* Injection pressure: ~ 1,300 psi
e Temperature: 50°C (122°F)

B Brine reservoir

BIG SKY . Test period: 3 days of pure brine flow + 14 days of brine/scCO: flow




Core Flow: Sampling
Danielson Core Interval (3271-3451 ft MD)

Depth (ft) = =
7 L
1. Lagoon 3292.1 Rﬂ‘g’ SR :_%
2. High Energy Shoal | 3294.1° .. . . ... l |
3.Shallow Reef front | 3307.2" § SN 1 el |
4.ForeReef | 33229 | L RS
5. Tidal Flat 3349.0/ T [

Tl e di Sl e Dol penoead E——:__’ - —_j___—
-l NRl|
I;‘u _;:j':_::_:—.::h
6. Reef 3410.7’ { -
__________________________________________________________ Le- d-d=--]--{+-F1
=
L_‘-.-_. & e

i
I
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Core Flow Methods: Sub-Sampling

@ =

—

—

__

[ ———

—
©
*—

Characterization
Method

-XRD

-XRF

-N, adsorption
-SEM-BSE-EDX
-Raman

-Thin section \

-Gas ¢ and k
-Micro-CT scan

-NMR (Water ¢ and k) >
-Strength

-SEM-BSE-EDX /
-Raman

-Thin section

-XRD

-XRF
-N, adsorption

Flow Through
CO: Challenge

M
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Experimental Results

High Energy

Shoal Reef

Lagoon

Before
CO:
Challenge

CO:inlet

After CO:
Challenge

Bic Sky CaArRBON

High Energy Shoal:

Massive crack and see-
through wormhole are
visible on the sample,
indicating that the presence
of scCO, initiates chemical
reactions leading to mineral
dissolution

Reef:

Severe erosion of the
sample and pore opening
provide physical evidence of
significant changes in pore
structure and connectivity

Lagoon:
Physical structure remains

the same, just some
discolorations

SEQULSTRATION PARTNERSHIP Much more reactive than Realistic injection scenaditana

STATE UNIVERSITY



NMR: High Energy Shoal

NMR: Fully-saturated core Gas Porosity/Permeability: Dried core

0.12 15.00

I Porosity-Pre-CO2 == Porosity-Post-CO2

—8—Permeability-Pre-CO2 | =& Permeability-Post-c02 | "%

0.1

12.00 2
ii

| iii
4 ~ 80000

0.08

9.00 7 <

- -

60000

0.06

6.00

40000

0.04

Porosity, ¢ (%)

norm. amplitude [arb.u.]

3.00

0.02

o 20000

0.00 Sl
512 1202 1842 2508

Confining Pressure, Pc (psi)

» A shift towards shorter T, times indicating either a decrease in the pore size distribution or a change in
the mineral composition on the surface of the pores.

» Decrease in pore size distribution is unlikely after a CO, challenge unless new mineral is precipitated or
CO, is trapped in the pores, causing less water to enter the core resulting in an apparent smaller pore
size distribution.

» Achange in the mineral composition of the surface will affect the surface relaxivity, p, and could
potentially cause the shift to shorter T, times.

» Gas ¢@/k: Significant increase is due to mineral dissolution
Bic Sky CArRBON M

SEQUESTRATION PARTHMERSHIP MONM
STATE UNIVERSITY
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NMR: Reef

NMR: Fully-saturated core Gas Porosity/Permeability: Dried core
0.07 15.00 3000
pre CO  challenge T —465ms [ Porosity-Pre-CO2 ===4 Porosity-Post-CO2
0.06 post CO challenge 2 —8—Permeability-Pre-CO2 =& Permeability-Post-CO2
poo | . 2500
0.05 | i e i S
§ 2000
':Si 0.04 | i =N 200
% 4:_>:- 1500
§ 0.03 | i )
= e 6.00
1<
Lé 0.02 | | c?_ 1000
%D 3.00
0.01 | | 500
o L - . . 0,00 s == S| .
10 10 10 10 502 1164 1823 2525
Confining Pressure, Pc (psi)
» Shorter T, population disappears after CO, challenge.
* No significant shift is observed for the longer T, population.
* New T, population appears after CO, challenge, indicates that the CO, challenge has potentially created
larger void spaces within the core.
» Gas ¢@/k: Significant increase is due to mineral dissolution
Bic Sky CARBON M
SEQUESTRATION PARTNERSHIP MONTAN&

STATE UNIVERSITY
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NMR: Lagoon

norm. amplitude [arb.u.]

NMR: Fully-saturated core Gas Porosity/Permeability: Dried core
0.12
20 [ Porosity-Pre-CO2 E==H Porosity-Post-CO2 P
0.1 | | —O—Pfrmeability-Pre-COZ =& Permeability-Post-CO2 0003
1.50
0.08 — 0.003
... | Pre/Post-CO. NMR signals | =
. r _‘? 1.00
were undetectable 2
0.04 | @]
o 0.50 0.001
0.02 |
0.001
0 ) 3 -2 -1 0.00 :E:?:E_ 0.000
10 10 10 10 10° 10 494 1185 2514
T, 18 Confining Pressure, Pc (psi)

 NMR signal is undetectable before and after CO: experiment because the pores were inaccessible

* No significant change in porosity and permeability

Bic Sky CArRBON M
SEQUESTRATION PARTMNERSHIP MONTANA
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NMR Porosities (%

Pre-CO: Challenge Post-CO: Challenge
Sample ID 1t ond 3 1t ond 31
Fuly  centrifug centrifug SR Fuly  centrifug centrifug SRl Remark
saturated e e saturated e e
@000g (c000g 00 20009 (6.000g) (107%
10.6 -- 6.2 54 7.6 -- -- 54
Shallow Core was
Reef Front 8.8 4.4 -- 3.8 -- -- -- -- destroyed during
CO: experiment
Shallow |
Reef Front [k 3.8 -- 2.9 * x - - Replacement

core forSR 1

Fore Reef ) )
Reef (R 1) 2.5 2.0 - - 9.0 7.6 - -

Tidal Flat
1.6 1.4 -- - & * - -
LaI'EgLOgn No NMR Signal No NMR Signal

-- No NMR data * NMR experiment is ongoing
**  CO:experiment is ongoing ***  Planned CO: experiment




XRD Mineralogy: High Energy Shoal

Pre-CO; Post-CO:

100.0% — 100.0% —

Hll Dolomite - CaMg(CQs)2 Bl Dolomite - CaMg(COs),

Wi% Wit%

* No significant change in mineralogy

BIG Sky CArRBON M
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XRD Mineralogy: Reef

Pre-CO; Post-CO:

45.'60/° 4 4r 30,

—0.9%
"‘9.20/0

14.9%

I Dolomite - CaMg(CO3),
B Calcite - Ca(CO»)

B Anhydrite - CaSO,

B Quartz low - SiO5

7
/ Il Dolomite - CaMg(CO3) 39.8%
45.2% Il Calcite - Ca(CO3)
Il Anhydrite - Ca(SO,)

W1t% Wt%
Béclg%, sgmfﬁl‘%g“nt change in mineralogy Monl:\;lﬂm A

STATE UNIVERSITY



XRD Mineralogy: Lagoon

Pre-CO:; Post-CO:

65.5% 48.8%
% I

—10.6%
\ /
34.5% 40.6% : Quartz low -CSi?)%
] Anhydrlte - CaS0q4 = Dolomite. {-qu:rgch;c)i from 1323 K - CaMg(COs),
wt% [l Silicon Oxide - SiO» W%
* Dolomite in the post-CO: core is likely present before the
test as the well log shows
Bic Sky CArRBON M
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Summary

 High energy shoal, reef, and lagoon rock samples respond differently to
supercritical CO..

e Rapid dissolution occurs predominantly in the reef and high energy shoal
rock cores primarily because carbonates are susceptible to dissolution in the
presence of CO..

* In addition to mineralogy, severity of the dissolution process is largely
influenced by the transport properties of the rock.

e Lagoon rock sample is the most resistant to CO: invasion mainly because it’s
pores are inaccessible, thus ensuring it’s integrity as a caprock.

Bic Sky CArRBON M
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EDX Elemental Composition : High Energy Shoal

Pre-CO;
Post-CO.

C **% pUzaf results ***

a_ elem/lins B/B *;* PUZ&fFIEEultE ;H c{atom) confid. h ﬂem”ine—P/B B—F c_c[atnm]_cnnfid._h_
¢ E-ser @Coat? 1.00000 1.00000  6.21 11.37 + 2.27 n C K-ser €Coat? 1.00000 1.00000 32.89  38.22 +- 6.42 n
ca K-alpha 298.7 1.01989 1.01345 22.12 12,13 +- 0.85 . Ca K-alpha 289.9 1.02490 1.02163 23.63 8.45 + 0.65
0 E-ser @ 1.00000 1.00000  48.57 €6.72 +-11.07 n C 0 K-ser R 1.00000 1.00000  50.98 15.64 +- 7.45 n
Mg K-ser €1.4 1.00510 1.00567 7.36 6.66 +- 0.63 ~ _
Al E-ser 1.8 1.00743 1.01015 0.20 0.16 + 0.07 Mg K-ser 8.2 L0063 100251 5.97 5.87 +- 0.5
Si R-ser 11.0 1.00559 1.01619 1.04 0.81 +- 0.11 Ir L-alpha 35.4 1.04050 1.17214 11.04 0.82 + 0,17
S E-ser 37.0 1.01345 1.03638 2.88 1.98 + 0.20
Cl R-sexr 3.8 1.01520 1.05744 0.28 0.18 +- 0.07 standardless 128,50 100.00 [25]
standardless 88.67 100.00 [2s]

Calcite and/or
Dolomite

Calcite and/or
Dolomite

i) 05 10 15 20 25 30 5 40 45 50 ] £0 65 70 75 ) 85 a0 95 L
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SEQUESTRATION PARTHMERSHIP MONM
STATE UNIVERSITY



EDX Elemental Composition : Reef

Pre-CO:

Post-CO:

a C #% PUzaf results #+¢
skk pUzaf results 4+ 9 a elem/line__ P/B B F c clatom) _confid. h_
elem/lins P/B B F c clatom)__confid. h C EK-ser @Coat? 1.00000 1.00000 31.96 39.43 +6.29 n
C E-ser @Coat? 1.00000 1.00000  &.86 16.18 +- 3.07 1 Ca F-alpha 285.8 1.02087 1.01923 20.39 7.54 4 0.50
Ca K-alpha 467.6 1.02130 1.01099% 37.64 20.61 +- 1.48 8 0 Eesmr @ 1.00000 100000 5158 4776 - 7.77 n
0 EK-ser @ 1.00000 1.00000 44.89 61.58 +-10.52 n ~ o o _
Mg K-ser  10.1 1.00546 1.00762  1.30 117 + 0.18 Mg F-ser @ 62.6 1.005851.00376 7.16 ~ 4.36 4-0.34
Si K-ser 5.8 1.01027 1.02338  0.58 0.46 + 0.10 IrI-alpha 13.0 1.033%5 1.23%55  4.26 0.33 +0.07
Si R-ser @ 12.2 1.01006 1.01062 1.10 0.58 +- 0.07
standardless 93.26 100.00 [25]
6 standardless 116.45  100.00 [2s]

=

Calcite and/or Dolomite
and Silicon dioxide

Calcite and/or Dolomite
and Silicon dioxide :

T
50 55 60 65 70 75 80 85 a0 85 0n 05 10 15 20 25 30 35 40 45 50 55 B0 65 10 15 80 85 a0 a5 10

Bic Sky CARBON
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EDX Elemental Composition : Lagoon

Pre-CO: Post-CO:

i #*% pUzaf results ***
*#%+ Dllzaf results *#* 5000 elen/line  B/B B F_ ¢ clatem)_confid. h_
elen/line /B 3 7 . clatom) confid. h ¢ R-ser  @Coat? 1.00000 1.00000  5.87 9.85 + 2.02 n
— — -- S Ca R-alpha 219.3 1.02370 1.01€12  18.68 9.39 + 0.76
S Ca R-alpha 233.4 1.02155 101247 19.15  12.55 + 1.28 o o B & 10000 Looom  se95  segs o553 m
0 EK-ser 1.00000 1.00000  39.80 65.34 +-11.26 1 Ir L-alpha 15.7 1.03856 1.23337  4.19 0.44 + 0.16
81 K-ser 749 1.01039 1.02206  1.75 7.95 - 0.98 - i R-ser  @L70.6 1.01143 1.01280 18.25  13.10 + 1.33
S K-ser 2069 1.0145 101894 1815  14.87 +- 1.66 S frew BERS LOWM LU LGS A0ST =087
_________________________________________________________________ =0 standardless 108.74 100.00 [2s]
standardless 84,84 100.00 [25] C
C 3000 a
a
2500
Anhydrite and Anhydrite and

Silicon dioxide Silicon dioxide

1000

500
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1ical Status

* Prepare as many techen(f:c}a]fts]tatus slides as needed, but recognize

the limits of the allocated presentation time.

* Use these slides to logically walk through the project. Focus on
telling the story of your project and highlighting the key points as

described in the Presentation Guidelines.

* Include specific information to show how your project 1s
advancing the state-of-the-art; be as quantitative as possible in
describing improvements in the performance of your technology
compared to the state-of-the-art.

Bic Sky CArRBON M
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Accomplishments to Date

— Bullet List of Accomplishments (see Presentation Guidelines for
examples).

— Multiple slides can be used if needed.

BIG Sky CArRBON M
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Lessons Learned

— Research gaps/challenges.

— Unanticipated research difficulties.

— Technical disappointments.

— Changes that should be made next time.
— Multiple slides can be used if needed.

BIG Sky CArRBON M
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Synergy Opportunities

— Discuss how collaboration among projects could have a
synergistic effect on advancing the technologies described during
the session in which you are presenting.
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Project Summary

— Key Findings.
— Next Steps.
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Appendix

— These slides will not be discussed during the presentation, but
are mandatory.
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Benefit to the Program

* Identify the program goals being addressed.

* Insert project benefits statement.

— See Presentation Guidelines for an example.

BIG Sky CArRBON M
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Project Overview
e Describe the proj%;t (%é)lals ang (@jgctiv s in the Statement of

: : S an CCtIves
Project Objectives. )

— How the project goals and objectives relate to the program
goals and objectives.

— Identify the success criteria for determining if a goal or
objective has been met. These generally are discrete metrics
to assess the progress of the project and used as decision
points throughout the project.
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Organization Chart

Management Team

) . ) Administration
Fiscal Director Director

— Manager
Bobby B Lee S5 I
obby bear =€ pangier Michelle Leonti

Accountant
Kathy Rich

Project Manager/
Research Scientist
Laura Dobeck

Project Manager - GIS and Web

, GIS & Data Manager i
Compliance Arandt Winkelman Coordinator
Jeannette Blank Thomas Naberhaus

Bic Sky CArRBON
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Organization Chart

Fiscal Director Director Ad nr:q'g:]j;:trm”
Bobby Be Lee S |
i o AR Michelle Leonti
Accountiant Project Manager/
ey Bich Research Scientist
Laura Dobeck

Task R1: Core Research
Laura Dobeck, MELU Lead
Bill Carey, LANL
Colin Shaw, M5U
Dave Bowen, MSU

lonathan Ajo-Franklin, LBNL

Task R2: Seismic Data

Interpretation
Lee Spangler, M5U Lead
Bryan DeVault, Vecta
Lianjie, LANL
Dave Bowen, MSU

Task R3: Site Characterization &

Modeling
Laura Dobeck, MSU Lead
Dave Bowen, M5U
Wade Zaluski 5C5
Bob Will, 3C5
Curt Oldenburg, LBNL
Quanlin Zhou, LBNL
Bill Carey, LAML,

Phil Stauffer, LANL

Task R4: Surface

Monitoring Data
Laurs Doheck, MSU Lead

Task R5: Regulatory, Risk
& Management Analyses
leannette Blank, MSU Lead

Task R6: GIS Analysis
leannette Blank, MSU Lead
Brandt Winkelman, MS5U

Task R7: Site Closure
leannette Blank, MSU Lead
Jim Kirksey, SC5

Task R8: Outreach and
Education
Jesnnette Blank, MSU Lead

Task R9: Data

Management
leannette Blank, M5U Lead
Brandt Winkelman, MS5LU

Task R10: Project
Management
Laura Dobeck, M5U Lead

Bic Sky CArRBON M
SEQUESTRATION PARTMNERSHIP MONTANA 124

STATE UNIVERSITY



Gantt Chart

2017 2013
Task Mame ~ Start + Finish - Oct Jan Apr Jul Oct Jan Apr Jul Ot
4 Tasks R1-R4 Completion of Research: Core, Seismic, Modeling, MVA Mon 1/2/17  Fri9/28/18 I 1
4 Task R1. Core Research Mon 1/2f17  Fri 9/28/18 I 1
R1.1 Characterization of Duperow fractures Mon 1/2/17  Fri6/30/17 [ |
4 R1.2 Laboratory Core Flood Studies Mon 1/2/17  Fri 6/29/18 I 1 1
M: Completion of core flood NMR Fri3/30/18  Fri3/30/18 *
4 R1.3 Fracture permeability of caprock Mon 1/2f17  Fri 12/29/17 I L 2
M: Completion of caprock fracture-permeability measurements Fri9f29/17  Fri9f29/17 +
4 R1.4 Core seismic properties Mon 1/2f17  Fri9/28/18 I 1
M: Completion of initial stress-dependent seismic property measurements Tue 12/26/17 Tue 12/26/17 *
of fractured Duperow samples and submission of manuscript g
4 R1.5 Lab measurements of fracture-matrix flow Mon 1/2/17  Fri9/28/18 I L2
M: Design calculations, sensitivity, and scale effects of fracture-matrix Sat9/30/17  Sat9/30/17 2
interaction and preparation of lab experiments (draft report) :
4 Task R2. Seismic Data Interpretation Mon 1/2/17  Fri6/29/18 I 1
R2.1 Seismic processing and interpretation Mon 1/2/17  Fri6/29/18 iy 1
R2.2 High-resolution 3D velocity model building Mon 1/2/17  Fri6/29/18 | |
R2.3 Geophysical Characterization of Kevin Dome Mon 1/2/17  Fri6/29/18 L 1
4 Task R3. Site Characterization and Modeling Mon 1/2f17  Fri 9/28/18 I 1
R3.1 Geologic framework of Kevin Dome Mon 1/2/17  Fri6/29/18 l |
R3.2 Stratigraphic architecture and reservoir characterization Mon 1/2/17  Fri6/29/18 | |
4 R3.3 Geostatic modeling Mon 1/2f17  Fri 6/29/18 O L 4
M: Distribution of revised geostatic model to partners Fri3/31/17  Fri3/31/17 +
R3.4 Liquid-gas CO2 phase transition modeling Mon 1/2/17  Fri12/29/17 [ |
R3.5 Fractured carbonate systems modeling Mon 1/2/17  Fri12/29/17 | 1
4 R3.6 Large-scale modeling and storage capacity estimate for Kevin Dome Mon 1/1/18  Fri 9/28/18 I »
M: Completion of large-scale modeling and storage capacity estimate for  Fri 9/28/18  Fri9/28/18 *
the Kevin Dome :
4 R3.7 Application of an Integrated Assessment Model Mon 1/2f17  Fri 12/29/17 I 1
M: Complete NRAP-IAM- calculations Fri12/29/17  Fril2/29/17 *
Task R4. Processing and Analyzing Surface Monitoring Data Mon 1/2/17  Fri6/29/18 | |
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Gantt Chart

2017 2018 201

Task Mame ~ Start ~ Finish - Oct Jan Apr Jul Oct Jan Apr Jul Oct Jar
4 Task R5. Regulatory, Risk, and Management Analyses Mon 1/2/17  Frig9f28/18 O 1
R5.1 Documenting Lessons Learned from BSCSP's Permitting and Regulatory Mon 1/2/17  Frig9/28/18 O |
Program : :
R5.2 Documenting Lessons Learned from BSCSP's Risk Management Program Mon 1/2/17  Frig9/28/18 [ |
R5.3 Documenting Lessons Learned from BSCSP's Management Strategies for Mon 1/2/17  Frig9/28/18 | |
Large-Scale Field Activities : :
4 Task R6. GIS for Regional, National, and Project-Level Analysis Mon 1/2/17 Mon 12/31/18 I H
R6.1 Regional Characterization for CC5 Mon 1/2/17  Fri9/28/18 | |
R6.2 National GI5S Working Group Mon 1/2/17 Mon 12/31/18 o H
R6.3 Analysis of National 5torage Resources and EPA Class VI Regulations Mon 1/2/17  Fril2/29/17 I |
R6.4 Geospatial Cyberinfrastructure Mon1/2/17 Mon 12/31/18 y i
R6.5 GIS Support for Project Activities Mon 1/2/17  Mon 12/31/18 | i
4 Task R7. Site Closure Thu 10/20/16 Fri 6/29/18 I 1 :
R7.1 Wallewein Well Mon 1/2/17  Tue 1/31/17 *
4 R7.2 Danielson Well Thu 6f1/17 Fri 6/29/18 I 1
M: Site closure or transfer of the Danielson 33-17 Well Fri 6/29/18 Fri6/29/18 *
R7.3 Landowner Communications Mon 1/2/17  Fri 6/29/18 | |
M: Final documentation of the Wallewein well site closure Thu 10/20/16 Thu 10/20/16 * :
4 Task R8. Outreach and Education Mon 1/2/17  Mon 12f31/18 I H
R8.1 Maintain Website Mon 1/2/17  Mon 12/31/18 | H
R8.2 Qutreach Materials Mon 1/2/17  Mon 12/31/18 | H
R8.3 Annual Meetings
R8.4 National Outreach Working Group Mon 1/2/17  Mon 12/31/18 ¥ i
R&.5 Collaborative Opportunities and Information Exchange Mon 1/2/17  Mon 12/31/18 C ]
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Gantt Chart

2017 2018 20
Task Name - | Start » Finish - Oct Jan Apr Jul Oct Jan Apr Jul Oct J
- Task R7. Site Closure Thu 10/20/16 Fri 6/29/18 — 1
- Task R8. Qutreach and Education Mon 1/2/17  Mon 12/31/18 I N
4 Task R9. Data Management Mon 1/2/17 Mon 12/31/18 I H
R9.1 Data Management Electronic Resources Mon 1/2/17  Mon 12/31/18 [ H
R9.2 Management of Geologic Samples Mon 1/2/17  Fri9/28/18 | 1
M: Complete data preparation for archival Mon 12/31/18 Mon 12/31/18 o
4 Task R10. Project Management Mon 1/2/17  Mon 12/31/18 ¥ i
R10.1 Reporting and publications Mon 1/2/17  Mon 12/31/18 1 f
R10.2 Risk Activities Mon 1/2/17  Mon 12/31/18 | i
R10.3 Energy development opportunities Mon 1/2/17  Mon 12/31/18 1 f
R10.4 Final Project Report and Technical Briefing Mon 1/2/17  Mon 12/31/18 [ H
R10.5 Project and Budget Management Mon 1/2/17 Mon 12/31/18 1 f
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