Improving the Economic Viability of Biological CO₂ Utilization by Improved Algae Productivity & Integration with Wastewater Treatment

Cooperative Agreement No: DE-FE0030822

CO2 Capture Technology **Project Review Meeting** August 17, 2018

Illinois Sustainable Technology Center | ILLINOIS

Basic Project Information

- Title: Improving the Economic Viability of Biological Utilization of Coal Power Plant CO₂ by Improved Algae Productivity & Integration w/ Wastewater Treatment
 - DOE Program Manager: Andy Aurelio
 - Lead Organization: University of Illinois Illinois Sustainable Technology Center
 - PI: Lance Schideman, PhD, PE
 - Major Collaborating Organization: Helios-NRG
 - Project Cooperative Agreement Number: DE-FE0030822
- DOE Funding Program DE-FOA-0001622: Applications for Technologies Directed at Utilizing Carbon Dioxide from Coal Fired Power Plants
 - Total Project Value: \$1,249,873 Government: \$999,536 Cost Share: \$250,337
 - Budget Period 1 Total Value: \$414,242 Government: \$331,394 Cost Share: \$82,848

- 3-Yr Project Duration: Oct. 1, 2017 Sept. 30, 2020 with Annual Budget Periods
 - Currently in Budget Period 1(BP1) October 1, 2017 September 30, 2018

Major Project Objectives

• Improve Algal Productivity & CO₂ Capture by Improved Bioreactor Design & Oper.

- Proprietary reactor design and algal strains grown on simulated flue gas with key contaminants added
- End of project performance goals
 - 35 g/m²·day biomass productivity
 - 70% carbon capture efficiency

• Reduce Net Costs and Energy Inputs for Producing Algal Products

- Integrate use of low-cost or negative-cost wastewater nutrient inputs
 - Large quantity of sustainable nutrients available
- Develop low-energy forward osmosis dewatering
- Membrane separation & recycle of aqueous byproducts from hydrothermal biofuel processes
- Algal biomass for animal feed
 - Large-volume stable markets with potential for higher net value than biofuels
- Sanitary sewer distribution of flue gas
- Evaluate Life-cycle and Techno-economic Impacts of Proposed System

Objectives in Context of Block Flow Diagram

Illinois Sustainable Technology Center

Β

- Task 1- Project Management
- Task 2- Demonstrate Stable Algae Cultivation w/ Simulated Flue Gas P
- Task 3- Demonstrate Stable Algae Cultivation w/ Wastewater Nutrients 1
- Task 4- Optimize CO₂ Capture Efficiency in the Algae Cultivation Process
- Task 5- Evaluate Novel Algae Dewatering Processes (forward osmosis)
- Task 6- Characterize algal biomass for HTL and animal feed applications
- Task 7- Demonstrate ability to concentrate & recycle HTL aqueous phase
- Task 8- Evaluate the potential of sewer network flue gas distribution
- Tasks 9- Techno-Economic Analysis
- Tasks 10- Techno-Economic Analysis

Project Organizational Chart

 Techno-economic and Life-cycle analysis for algae cultivation and harvesting processes

INDUSTRIAL ADVISORY BOARD

Managers and Design Consultants from Power and Wastewater Industries

- Advise on current industry drivers and concerns
- Review plans for integration with existing infrastructure facilities
- Review and comment on project results

• Industrial Advisory Board Members

- Springfield City Water, Power & Light
 - 578 MW coal-fired steam turbine generators
- Urbana-Champaign Sanitary District
 - 40 MGD Wastewater Treatment Plant Capacity
- Fehr-Graham Engineering
 - Wastewater Design Consultant

What is the Value of Wastewater Nutrient Removal?

- Baseline Algae Elemental Mass Composition 36%C, 7%H, 50%O, 6%N, 1%P
- Est. Wastewater Treatment Value of Algal Nutrient Uptake (0.06*\$4.26+0.01*\$8.57)*2000 = \$680/ton

I ILLINOIS

Illinois Sustainable Technology Center

ENERGY

Helios-NRG, LLC

ΔΤΙΟΝΔΙ

Economic Rationale: Integrating wastewater treatment can make algal biofuels cost-effective (*Ref: C.T. Kuo PhD Thesis, Univ. of Illinois, 2017*)

Cost Categories	2015 Current State of Technology w/ Algae Productivity of 8.5 g/m ² /day	2022 DOE Projected Design Case w/ Algae Productivity of 25 g/m ² /day	
Algal Biomass Production Costs (\$/ton)		(Project Economic Impacts)	
Ponds & Inoculum	\$ 1,359	\$ 289 (Raceway pond mods + \$44)	
CO ₂ Supply	\$ 99	\$ 97 (Carbon capture credit - \$60)	
Dewatering Operations	\$ 82	\$ 52	
Nutrient Supply	\$ 25	\$ 24 (WW credit -\$680)	
Other Costs	\$ 76	\$ 32	
TOTAL Algae Biomass Prod	\$ 1,641 /dry ton (DT)	\$ 494 /DT (-\$202/DT)	
Algal Biofuel Production Costs (\$/gge)			
Algae Biomass Supply	\$ 15.15	\$ 3.18 (Sum of above -\$1.28)	
Hydrothermal Liquefaction Conv.	\$ 1.18	\$ 0.49	
Bio-oil Upgradation/Finishing	\$ 0.44	\$ 0.31	
Aqueous product post-treatment	\$ 1.54	\$ 0.57 (Conc/recycle aq prod. \$0.28	
Balance of Plant	\$ 0.29	\$ 0.17	
TOTAL Biofuel Production Costs	\$ 18.60 / gal gasoline equiv (gge)	\$ 4.72/gge (-\$0.03/gge)	
ENERGY Illinois Sustainab	le Technology Center 📕 ILLINOI	S Helios-NRG, LLC 8	

Impact of flue gas contaminants on algae growth

Simulated post-FGD flue gas (all with 12% CO2)

Species: H-1903

Illinois Sustainable Technology Center

Impact of flue gas contaminants on algae growth

Simulated post-FGD flue gas (all with 12% CO2)

Algae Heavy Metal Content after Combined Heavy Metal Tests

Compared with Animal Feed Maximum Tolerable Level (MTL) (National Research Council, 2005)

Minerals	H-1903 2 HM (ppm)	H-1903 5 HM (ppm)	Poultry Feed MTL (ppm)	Swine Feed MTL (ppm)	Cattle Feed MTL (ppm)	Fish Feed MTL (ppm)
As		2.18	30	30	30	5
Cd	स्झ	सुझ	10	10	10	10
Cr	2.93	1.16	100	100	100	3,000 [*] as CrO
Со	स्रञ	स़ञ	25	100	25	
Cu	64.8	46.6	250	250	40	100
Pb	स़इ	स़ड़	10	10	100	10
Ni	स़इ	स़ड़	250	250	100	50
Se		7.7	3	4	5	2
Zn	10.3	11.3	500	1000	500	250

• Algal biomass over accumulated Cu, Se which could limit certain animal feed applications without management or mitigation

11

Sample Type 8	& Treatments	TSS (mg/L)	COD (mg/L)	NH3-N (mg/L)	NO3-N (mg/L)	Total N (mg/L)	Total P (mg/L)	рН
Muni-WW Centifuge Centrate	Filtered & Autoclaved	n/a	260 ±12	1021 ±8	22 ±17	1133 ±76	274 ±2	7.7
HTL Aq Product	Filtered & Autoclaved	n/a	44,177 ±326	7,206 ±66	360	10,944 ±1,237	2,108 ±7	5.6

- HTL aq product was significantly stronger than municipal wastewater dewatering centrate
 - Higher organics (~100x)
 - Higher nutrients (~10x)
 - HTL aq product has nitrogen-substituted organics and phenolics that have been shown to have inhibitory effects on microbial growth including algae

Impact of wastewater nutrient replacement on algae growth

Lower-strength centrate wastewater from biosolids dewatering

Species: H-1903

U.S. DEPARTMENT OF ENERGY

Illinois Sustainable Technology Center

ILLINOIS

ATIONAL

Impact of wastewater nutrient replacement on algae growth

Higher-strength HTL aq wastewater from biofuel production

Species: H-0322

Illinois Sustainable Technology Center

I ILLINOIS

Weekly Avg. Productivity With Flue Gas & Wastewater Inputs

ILLINOIS

NATIONAL

HNOLOGY

Weekly Avg. Productivity With Flue Gas & Wastewater Inputs

Species: H-0322

IILLINOIS

NATIONAL

HNOLOGY

Project Milestones for Budget Period 1

Budget Period	Task #	Mile- stone #	Description	Planned Completion Date	Actual Completion Date	Verification Method
1	1	T1.1	Kickoff Meeting	Dec. 2017	Dec. 2017	Presentation file
1	1	T1.2	Updated Project Management Plan	Oct. 2017	Oct. 2017	Project Management Plan File
1	2	T2.1	Stable Algae Growth with simulated flue gas	Mar. 2018	Mar. 2018	Quarterly Progress Report
1	3	T3.1	Stable Algae Growth with wastewater nutrients	Sept. 2018		BP1 Annual Progress Report
1		G/N-1	Algal Productivity with Simulated Flue Gas > $25 \text{ g/m}^2/\text{d}$	Sept. 2018		DOE Annual Review

Project Success Criteria for Each Budget Period

Decision Point	Date	Success Criteria
		Algal Productivity > 25 g/m ² /d (weekly average)
		with Simulated Flue gas containing 12% CO2,
G/N-1		SOX, NOX and representative levels of heavy
Go/No-Go Budget Period 1	9/30/2018	metals Hg, Se, As, Cu and Cr
		Algal Productivity > 25 g/m ² /d (weekly average)
		and >70% CO2 capture with Simulated Flue gas
		containing 12% CO2, SOX, NOX and
G/N-2		representative levels of heavy metals Hg, Se, As,
Go/No-Go Budget Period 2	9/30/2019	Cu and Cr
G/N-3		Integrated Application of Project Technologies w/
Go/No-Go Budget Period 3	9/30/2020	Projected Cost of Algal Biomass < \$470 /dry ton

Technical Risks & Potential Mitigation Strategies

Description of Risk	Probability	ImpactRisk Management- Mitigation and Response Strategies		
Technical Risks:				
Algae growth is inhibited by contaminants in post-FGD flue gas $(SO_x, NO_x, metals)$	Medium	Medium to High	 Use adsorbents in algal culture to sequester problem contaminants Problem contaminants can be removed from the simulated flue gas For future applications flue gas pre-treatment may be required 	B
Algae growth is inhibited by contaminants in nutrient-rich wastewater liquids	Low	Medium to High	 Use adsorbents to sequester problem contaminants Wastewater filtrate can be pre-treated to remove problem contam. Wastewater filtrate use for algae cultivation can reduced/eliminated 	1
Algal uptake of CO_2 is not fast enough for capture goal (70-90% removal in 3 stages)	Low	Low	 Provide fine bubble diffusers if it is a physical mass transfer limitation Add stages if it is a biological limitation 	
Forward osmosis dewatering flux is too low to facilitate cost-effective applications	Low	Medium	 Pre-treat algal biomass with ultrasound to open cells and reduce resistance to water diffusion through the cell walls Use alternate dewatering methods 	
Concentrated HTL aqueous product is not converted to bio-oil when recycled	Low	Low	• Use alternate methods for treatment of HTL aqueous product (anaerobic digestion, or catalytic hydrothermal gasification)	
Sewer conveyance of flue ga causes too much loss/dilution		Low	• Use a dedicated pipeline for transport of CO ₂ from flue gas	

Summary of Major Project Activities

NET NATIONAL ENERGY TECHNOLOG LABORATORY

- Task 1- Project Management (Ongoing)
 - Monthly Progress Conference Calls with DOE Program Manager
 - Three Quarterly Progress Reports Submitted
 - Individual Meetings with Three Industrial Advisory Board Members
- Task 2- Algae Cultivation using Simulated Flue Gas w/Contaminants (Completed)
 - Demonstrated acclimation & robust growth of 2 algal species w/ acid gasses (CO₂, NO_x, SO_x)
 - Demonstrated acclimation & robust growth of 2 algal species w/ heavy metals (As, Se, Hg, Cr, Cu)
- Task 3- Algae Cultivation w/ Wastewater Nutrients (Ongoing)
 - Demonstrated acclimation & robust growth of 2 algal species with 2 wastewater sidestreams
 - Centrate from wastewater biosolids centrifuge dewatering
 - Raw hydrothermal liquefaction (HTL) aqueous product from conversion of biomass to biofuels
 - >50% nutrient replacement achieved with all combinations of wastewater nutrients & algal species
 - Full nutrient replacement achieved with several combinations of wastewaters & algal species
 - Ongoing testing to optimize productivity of algal cultures

Helios-NRG, LLC

New Flue Gas Testing Capability

Small-Scale Algae Cultivation w/ Bottled Flue Gas Samples

	LOW FLUE GAS	MEDIUM FLUE GAS
Flue Gas CO ₂ concentration	6.01%	6.01%
Air pumping rate (L/min)	0.5	0.5
Flue gas Injection rate (L/min)	0.05	0.1
Influent CO ₂ conc.	0.58%	1.04%
Exhaust CO ₂ conc.	0.44%	0.85%
CO ₂ removal efficiency	24%	18%
Carbon Capture (mg-C)	183.0	258.3
Assimilated Carbon (mg-C)**	178.6	243.7

Lance Schideman schidema@Illinois.edu 217-390-7070

© 2014 University of Illinois Board of Trustees. All rights reserved. For more permission information, contact the Illinois Sustainable Technology Center, a Division of the Prairie Research Institute.

istc.illinois.edu

