Improving the Economic Viability of Biological CO₂ Utilization by Improved Algae Productivity & Integration with Wastewater Treatment

Cooperative Agreement No: DE-FE0030822

Illinois Sustainable Technology Center 🕴 📕 ILLINOIS

Basic Project Information for DE-FE0030822

- Title: Improving the Economic Viability of Biological Utilization of Coal Power Plant CO₂ by Improved Algae Productivity & Integration w/ Wastewater Treatment
 - DOE Program Manager: Andy Aurelio
 - Lead Organization: University of Illinois- Illinois Sustainable Technology Center
 - Primary Collaborating Organization: Helios-NRG
 - CO-Pi: Ravi Prasad, Fred Harrington
- DOE Funding Program DE-FOA-0001622: Applications for Technologies Directed at Utilizing Carbon Dioxide from Coal Fired Power Plants
 - Total Project Value: \$ 1,249,873 Government : \$999,536 Cost Share: \$250,337
 - Currently in Budget Period 2 (BP2)- October 1, 2018 September 30, 2019
- Major Project Objectives & Goals
 - End of project performance goals
 - 35 g/m²day biomass productivity (vs 8.5 g/m² day DOE Baseline- 2015 State of Technology)
 - 70% CO₂ capture efficiency
 - \$470/ton algal biomass projected nth plant (vs \$1,641/ton current DOE Baseline)

2

BP2 Project Tasks in Context of Process Flow Diagram

NATIONAL

Techno-Economic Rationale: Integrating wastewater (WW) treatment can make algal animal feed cost-effective

Harvest & Dewater

\$82/DT

\$50/DT

Ponds/Inoculum: 2015 DOE Case \$1,359/DT Proposed Case \$331/DT

Total Biomass Cost

\$1641 /DT

\$537 /DT

extra drying cost (\$330/DT)

Task 4- BP2 Algae Testing Plan Overview

- Transition from lab batch to continuous (w/liquid transfer)
- Transition from artificial lighting to sunlight (Greenhouse)
 - Quantify sunlight variations and impact on performance
- Greenhouse tests w/ simulated flue gas
 - 12% CO_2 + SO_X, NO_X & 5 heavy metals (Cu, Cr, Hg, As, Se)
- Investigate and optimize greenhouse cultivation operations
 - Algae concentration effects on productivity
 - Gas/liquid flow rates effect on CO₂ capture & productivity
 - Long term stability & performance in greenhouse
- Demonstrate weekly average productivity of 25 g/m²/day with 70% CO_2 capture simultaneously for a simulated Multi-Stage Continuous (MSC) reactor system

Lab Side-Lit & Multi-Stage Continuous System

• Algae tolerance to key post-FGD flue gas contaminants demonstrated

U.S. DEPARTMENT OF

ENERGY

• Wastewater can beneficially replace purchased nutrients to reduce costs

Illinois Sustainable Technology Center

Helios-NRG, LLC

Optimizing Long-term Greenhouse Operations

- Fluctuating light intensity results in large variations in algae growth (productivity) and CO₂ uptake
- Resilience of system demonstrated despite natural and abnormal fluctuations in greenhouse conditions

Air supply disruption led to ~100% CO2 in feed

ILLINOIS

Demonstration of CO2 Capture and Productivity Goals

Greenhouse Operation

BP2 algae cultivation targets met \rightarrow Weekly average of 30 g/m²/day productivity achieved simultaneous with 74% CO₂ capture demonstrated for a 2-stage MSC system

- Bench-scale open cell forward osmosis system was developed to test algae dewatering
- Biomass dewatered to above 20% solid content without pre-treatment in reasonable time
- Dewatering efficiency: $1 \text{ M MgCl}_2 > 20\% \text{ MgSO}_4 \sim 1 \text{ M NaCl}$

10

Improving F.O. dewatering process for cost and energy inputs

Effect of Feedstock Solids Content on Flux

• Forward osmosis dewatering efficiency drops as culture concentration increases

Illinois Sustainable Technology Center 🛛 👖 ILLINOIS

J.S. DEPARTMENT OF

ENERGY

Helios-NRG, LLC

Improving F.O. dewatering process energy inputs

1 m ³ 1% 1 st sta	age F.O.	3% 0.3 m ³ 2 nd stage F.O ■ Source/Sink	20% 0.05 m ³
	Starting Solid (%)	Ending Solid (%)	Energy consumption (kWh/m3)
Settling Pond	0.1	1	-
Membrane	1	13	0.04
Centrifuge	13	20	1.35
Forward Osmosis 1 st Stage	1	3	0.26
Forward Osmosis 2 nd Stage	3	20	0.57

* 2-stage F.O. process using natural brines or sea water can greatly reduce dewatering energy inputs

Task 6. Characterize algal biomass for HTL & animal feed Proximate analysis of flue gas fed algal biomass H0322 H1903 9% 12% Carbohydrate Carbohydrate 9% 31% Crude Protein Crude Protein 1% 14% 45% Crude Fat Crude Fat 5% Crude Fiber Crude Fiber 36% Ash Ash 38%

• Both species are rich in protein and carbohydrates, low in fat, which is suitable for animal feeds

ILLINOIS

ATIONAL

Heavy metals in algae grown w/ flue gas contaminants

Compare with animal feed maximum tolerable level (MTL)

Minerals	H-1903 Cu, Cr, As, Hg, Se (ppm)	Poultry Feed MTL (ppm)	Swine Feed MTL (ppm)	Cattle Feed MTL (ppm)	Fish Feed MTL (ppm)
As	2.18	30	30	30	5
Cd	<1	10	10	10	10
Cr	1.16	100	100	100	3,000 [*] as CrO
Со	<2	25	100	25	
Cu	46.6	250	250	40	100
Hg	0.5	1	2	2	1
Pb	<5	10	10	100	10
Ni	<5	250	250	100	50
Se	0.54	3	4	5	2
Zn	11.3	500	1000	500	250

• Algal biomass grown with flue gas contaminant meets most animal feed limits for metals and it can be blended with other feeds to mitigate any heavy metal concerns

Cattle digestibility test with algal biomass

NATIONAL ENERGY TECHNOLOGY LABORATORY

- In vitro fermentation assay
 - Rumen fluid from cannulated steer
 - Incubate samples for 24 hours

• Results

- Grinding with mortar and pestle increased In-vitro dry matter digestability (IVDMD)
- Looking into other biomass treatments to increase digestability
- Working to reduce run to run variations

U.S. DEPARTMENT OF ENERGY

Preprocessing Effects on Digestability

Helios-NRG, LLC

15

Biomass elemental analysis and HTL Performance

Carbon Distribution in HTL Products

	H1903	H0322	
C (% dw)	52.44	46.83	H19
H (% dw)	7.54	7.11	ЦОЗ
O (% dw)	35.52	40.98	1103
N (% dw)	4.50	5.10	
Biomass Heating Value (MJ/kg)	22.15	18.66	
HTL Biocrude oil Fraction	0.347	0.312	H19
HTL Biocrude oil HHV (MJ/kg)	35.1	34.8	HOS

- H1903 biomass was preferable for biocrude production
- Most of N is distributed to HTL aqueous product

Task 7. Demonstrate ability to concentrate & recycleHTL aqueous phase (PHWW)

Effect of recycling PHWW on biocrude yield & quality

	Algae Only	Algae + Run 1 Retentate (20%)	Algae + Run 2 Retentate (20%)
Biocrude Oil Yield Fraction	0.349	0.368	0.371
C (%)	70.64	73.74	73.42
H (%)	8.78	9.38	9.12
N (%)	5.63	5.59	5.72
O (%)	14.95	11.29	11.74
HHV (MJ/kg oil)	33.7	36.3	35.7

- 6% increase in biocrude yield w/ PHWW recycle
- Small N increase in the biocrude oil

- ~60% of PHWW organics captured in NF retentate
- Significant N also captured in NF retentate (~50%)
 - May not be desirable → Zeolite treatment can mitigate

TEA: Integrating WW treatment can make algal biofuels cost-effective

Algal biomass for fuel

Algal Biomass Supply Cost: \$15.15/gge (\$1,641/DT) Algal Biomass Supply Cost: \$5.25/gge (\$537/DT)

Aqueous Product Treatment Catalytic Hydrothermal Gasification \$1.54/gge Nanofiltration

\$0.28/gge

		Flupuseu
Biofuel Production Cost	Baseline	case for BP2
	(2015 case)	
Algal Biomass	\$15.15 /gge	\$ 5.25/gge
Hydrothermal Liquefaction	\$ 1.18/gge	\$ 1.18/gge
Bio-oil Upgrade	\$ 0.44/gge	\$ 0.44/gge
Aqueous post treatment	\$ 1.54/gge	\$ 0.28/gge
Balance of plant	\$ 0.29/gge	\$ 0.29/gge
TOTAL Biofuel Cost	\$ 18.60/gge	\$ 7.44/gge

Bio-oil Upgrade \$0.44/gge

Revenue for Algal Biofuels

CO ₂ Removal:	\$ 0 - \$ 0.6 /gge
Nutrient Removal:	\$ 3.7 - \$ 7.2 /gge
Fuel Selling Price:	\$ 2.0 - \$ 3.5 /gge
	\$ 5 7 - \$ 11 3/gge

Project Milestones for Budget Period 2

Budget Period	Task #	Mile- stone #	Milestone Description	Planned Completion Date	Actual Completion Date	Comments
2	4	T4.1	Single stage test of MSC representation with >70% CO ₂ capture and >25 g/m ² /d	9/30/2019	7/30/2019	Simulated Multi-stage CO ₂ capture demonstrated >70% w/ single-stage tests
2	5	T5.1	Dewater algal biomass >15% solid content through forward osmosis using <1.35 kwh/m ³	9/30/2019		In-Progress- >20% solids content shown w/ min. energy input of 0.83 kWh/m ³ when seawater available
2	6	T6.1	Characterize algal species that biomass heating value > 18MJ/kg and protein content > 30%	3/31/2019	3/20/2019	Completed- 2 species sample analyzed
2	6	T6.2	Demonstrate a minimum in vitro dry matter disappearance of 40% for algal strains digested in rumen fluid	9/30/2019		In-Progress- H0322 ground sample had >45% dry matter disappearance, but the result was not yet repeated
2	7	T7.1	Recycle >50% of carbon from HTL aqueous and increase biocrude oil yield by > 5%	9/30/2019	6/30/2019	Completed- ~60% of carbon from HTL-aq recycled to enhance oil by 5%

Project Success Criteria for Each Budget Period

Decision Point	Date	Success Criteria
		Algal Productivity > 25 g/m ² /d (weekly average)
		with Simulated Flue gas containing 12% CO2,
G/N-1		SOX, NOX and representative levels of heavy
Go/No-Go Budget Period 1	9/30/2018	metals Hg, Se, As, Cu and Cr
		Algal Productivity > 25 g/m ² /d (weekly average)
		and >70% CO2 capture with Simulated Flue gas
		containing 12% CO2, SOX, NOX and
G/N-2		representative levels of heavy metals Hg, Se, As,
Go/No-Go Budget Period 2	9/30/2019	Cu and Cr
G/N-3		Integrated Application of Project Technologies w/
Go/No-Go Budget Period 3	9/30/2020	Projected Cost of Algal Biomass < \$470 /dry ton

Lance Schideman schidema@Illinois.edu 217-390-7070

© 2014 University of Illinois Board of Trustees. All rights reserved. For more permission information, contact the Illinois Sustainable Technology Center, a Division of the Prairie Research Institute.

istc.illinois.edu

