ROBUST IN SITU STRAIN MEASUREMENTS TO MONITOR CO$_2$ STORAGE

Project Number FE0028292

Scott DeWolf and Larry Murdoch, Clemson University
Stephen Moysey, Leonid Germanovich, Hai Xiao, Alex Hanna, Liwei Hua
Clemson University
Scott and Marvin Robinowitz, Grand Resources
Robust Borehole Strainmeter

• Downhole electronics
 – Cost
 – Power
 – Heat
 – Lightning
 – Water
 – Corrosion
 – Data transmission

• Robust→Optical
 – Distributed
 – Point

Gladwin borehole strainmeter
Project Goals and Tasks

1. Instrumentation
 - Point strain; ultra-high resolution, multi-component strain + tilt
 - Distributed strain; high resolution, spatial distribution
 - Temporal; DC→kHz; Tectonic ←→ seismic

2. Strain Interpretation
 - Relevant injection scenarios
 - Analytical solution
 - Inversion applications

3. Field Demonstration
 - Deploy instruments in field injection setting
 - Acquire data, interpret

Outline
- Technical Status
- Accomplishments
- Lessons Learned
- Synergy
- Summary
Michelson Interferometers

- Coherent light source (laser) input
- 3x3 splitter to divide input light
- Faraday mirrors
 - Polarization insensitive
- Phase-shifted interference fringes
 - Directional fringe information
- Real-time digital demodulation
Task 1: Single-Component Instruments

Embedded Areal Strainmeter “Smart Casing”

- Integrated reference
- Adapts to standard pipe
- “Open-Closed” design
 - Open at top
 - Closed at bottom
- “Open-Open” design
 - Open at both ends

Fiber-wrapped casing

Open top

Fully open
Task 1: Multi-Component Instruments

Horizontal tensor strainmeter (nested areal)
- Closed downhole package
- Fully potted interior, welded exterior

Input/Output Fiber
Upper Centralizer
Fiber-Wrapped Sensing & Reference Mandrel Pair
Integrated Counterweight

Design

Sensing element
Reference element
Fiber-wrapped tubes
Prototype
Task 1: Multi-Component Instruments

Horizontal tensor strainmeter (nested areal)
- Closed downhole package
- Fully potted interior, welded exterior

Design:
- Input/Output Fiber
- Upper Centralizer
- Fiber-Wrapped Sensing & Reference Mandrel Pair
- Integrated Counterweight
- Lower Centralizer
- Sensing element
- Counterballast
- Reference element

Prototype:
- Fiber-wrapped tubes
Task 1: Multi-Component Instruments

Horizontal tensor strainmeter (inclined wraps)
- Demonstrated proof-of-concept (single-component)
- Measure full strain tensor in “Smart Casing”

Dead-weight load tester
- Repeated load response to increasing mass
- Rotate sensor to get load sensitivity as a function of borehole package azimuth
Task 1: Multi-Component Instruments

Automated Dead-Weight Calibrator
- Repeated loading at a given weight
- Automated load indexing (10 @ 5 lbs)
- Manual azimuth indexing...

Indexing Mechanism

Carriage

Lifting Mechanism

Main Frame

Weight Stack

Loading Frame

Strain Sensor
Task 1: Multi-Component Instruments

Optical Fiber Michelson Interrogator

- 9-36 Volt operation, ~2.25 Watt
- 3” diameter pressure case

Fiber Cable Input
Photodetector Daughterboard
Laser Current Source
Electrical Cable Input
Power Distribution Board
ADC
Laser and Mount

1-channel board
2-channel board
3-channel board
Microwave Photonics
A new optical fiber distributed sensing technology

Optical Carrier Microwave Interferometry (OCMI)

- Use microwave (GHz frequency) to modulate light
- Optical fiber with reflectors fabricated by femtosecond laser micromachining
- Interferometers from pairs of reflectors
- The microwave signal is used to locate the reflectors
- The optical signal is used to measure displacement between reflectors
Microwave Photonics
Static-Dynamic Strain

Original OCMI
- ~1 \(\mu \varepsilon \), microwave interference

Recent Advances
- Light source → coherent
- Coherent Microwave Photonic Interferometry (CMPI)
 - New algorithm, read optical interference phase
- Interrogator
 - Portable, remote access, non-proprietary

Current Performance
- Displacement of ~1 nm
- Strain depends on spacing of reflectors
 - 0.1 \(\mu \varepsilon \) over 1 cm, 1 \(\mu \varepsilon \) over 1 m
- DC to 20 kHz
Proof-of-concept CMPI lab experiments
Static \rightarrow Dynamic Loading

Column with axial pipe filled with sand

- Reflectors spaced 0.15 m apart as sensors to measure strain at 7 locations along a pipe in sand
- Static load on casing, sand
- Dynamic load, multiple frequencies from acoustic source on pipe
Proof-of-concept CMPI lab experiments
Static Loading

Static strain:
- Linear with load
- Decreases with depth
- Stiffness consistent with PVC at S1
- Increase stiffness with depth due to friction with sand
Proof-of-concept CMPI lab experiments

Dynamic Loading

Dynamic strain:

- Acoustic spectra at 7 sensors, 0.1 to 3 kHz
- Amplitude decrease w/depth similar to static
Task 2. Strain Interpretation

Subtask 2.1. Pressure distribution
Subtask 2.2. Leakage
Subtask 2.3. Ambient processes
Subtask 2.4. Data reduction, filtering
Subtask 2.5. Model-based interpretation
stochastic inversion

Concept
Gas saturation \rightarrow Compressibility
Compressibility \rightarrow Strain
Gas saturation \rightarrow Strain

Results
Horizontal strain affected
Vertical strain larger, but relative change less
Magnitude increases with S_{CO_2}
Magnitude and phase with location
Detect with cross-spectrum analysis
Task 3. Field Experiment

- **Objective**: Measure/interpret strain during waterflood as analog to CO2 injection
- **Location**: Bartlesville Sandstone, Pennsylvanian North Avant Field, Osage County, OK 100+ years of oil production

Permeable sand isopach

Drilling at AVN location

Installing strainmeter

Strainmeters at Avant Field
Accomplishments to Date

Point strain measurement, Fiber interferometer
- Monolithic tiltmeter designed, built, lab tested
- 2 areal “smart casing” strainmeters designed, built
- 2 tensor strainmeters, designed, built

Distributed strain, Microwave photonics
- New light source, New algorithm
- High resolution strain, static → 20 kHz
- Non-proprietary field interrogator
- Lab demo
Lessons Learned

High sensitivity

- Fiber packaging — armoring/coupling
- Noise — detect everything
- Calibration — limit noise

Scaling to:

- Multiple instruments
- Multiple components per instrument
- Field-based interrogator
Project Summary

Point Strain, Fiber Interferometers
- Monolithic tiltmeter, biaxial, high resolution
- Wrapped tube, ultra high resolution, component for tensor

Distributed Strain, Microwave Photonics
- High resolution static strain → seismic frequency
- Non-proprietary gear

Next Steps
- Refine instruments, lab → field
- Field tests
- Theoretical analyses
Mandatory Slides
Benefit to the Program

Program goals being addressed

Carbon Storage Goal: Develop and validate technologies to ensure 99 percent storage permanence

SubTER Pillar 2: Subsurface stress and induced seismicity

SubTER Pillar 4: New subsurface signals

Benefits statement

The proposed project will contribute to *Area of Interest 1 – Field Demonstration of MVA Technologies* by demonstrating a method that would improve the ability to track changes in pressure and strain in order to identify possible release pathways. Broadband, high-resolution strain is a new signal that has seen limited use in CO\textsubscript{2} storage or geothermal exploration, largely because of limitations in instrumentation and data analyses. This research will develop methods for measuring and understanding this signal, and as such will provide a secondary contribution to Area of Interest 2, as well as broader applications to the four pillars of the SubTER mission for improving understanding of subsurface processes.
Project Overview: Goals and Objectives

Ultimate goal: develop and demonstrate technology that can measure and interpret in-situ strain signals to improve understanding and reduce risk during the CO₂ injection processes.

1. **Instrumentation.** Refine and develop prototype instruments that can measure small in-situ strains at low cost with minimal use of downhole electronics and electrical power.

2. **Strain Interpretation.** Anticipate the strains caused by injection, and interpret strain data associated with injection of CO₂, and other related processes.

3. **Field Demonstration.** Demonstrate the use of low-cost, low-power, robust strainmeters during a commercial-scale injection project analogous to CO₂ storage, and interpret the resulting data.
Gantt Chart

<table>
<thead>
<tr>
<th>Task 1.0 Management (Murdoch)</th>
<th>BP 1</th>
<th>BP 2</th>
<th>BP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 2.0 Instrument (DeWolf)</th>
<th>BP 1</th>
<th>BP 2</th>
<th>BP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Point instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Distributed instruments</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.3 Multicomponent instruments</td>
<td></td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 3.0 Analysis (Moysey)</th>
<th>BP 1</th>
<th>BP 2</th>
<th>BP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Pressure distribution</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.2 Leakage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Ambient Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Filtering</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3.5 Interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 4.0 Field Test (Germanovich)</th>
<th>BP 1</th>
<th>BP 2</th>
<th>BP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Design and Workplan</td>
<td></td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4.2 Deployment</td>
<td></td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Injection Test</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4.4 Ambient processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 Data analysis</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
Bibliography

- DeWolf, S. and L.C. Murdoch. Clemson University Patent Disclosure 2018-037: An optical device to measure one or more strain components in subsurface formations (DE-FE0023313 and DE-FE0028292)

Additional Slides
Project Goals and Tasks

1. Instrumentation
 - Point strain; ultra-high resolution, multi-component strain + tilt
 - Distributed strain; high resolution, spatial distribution
 - Temporal; DC→kHz; Tectonic ←→ seismic

2. Strain Interpretation
 - Relevant injection scenarios
 - Analytical solution
 - Inversion applications

3. Field Demonstration
 - Deploy instruments in field injection setting
 - Acquire data, interpret
Task 1: Single-Component Instruments

Monolithic Tiltmeter
- Passive, no leveling
- Full vector

Design
Prototype

![Diagram of Monolithic Tiltmeter]

- Upper Cap
- Pendulum Mount
- Pendulum Rod
- Mount with Optical Components
- Pendulum Mass
- Lower Cap

![Graph showing Tilt Sensitivity vs. Tilt Azimuth]

- Free Period

![Graph showing Magnitude vs. Frequency]

- x-Tilt
- y-Tilt
Microwave Photonics

Characteristics
- Spatially continuous, fully distributed sensing.
- High spatial resolution (>1cm)
- Flexible gauge length (1cm – 100m)
- Long reaching distance (~km)
- Material and mode independent (glass, polymer, sapphire single-mode and multimode)
- Reflectors → High signal:noise ratio
- Standard (non-proprietary) optical electronics

Sensitivity
- Incoherent light source: με but large dynamic range
- Coherent light source: nε but small dynamic range

Dynamic measurement
- tested up to 20kHz