CHARACTERIZING AND INTERPRETING THE IN SITU STRAIN TENSOR DURING CO₂ INJECTION

Project NumberDE-FE0023313

Larry Murdoch and Scott DeWolf, Clemson University

Co-PI Stephen Moysey, Clemson University Co-PI Leonid Germanovich, Clemson University Co-PI Glen Mattioli, UNAVCO Alex Hanna, Clemson University Marvin Robinowitz, Grand Resources Scott Robinowitz, Grand Resources David Mencin, UNAVCO

U.S. Department of Energy

National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Project Overview Goals and Tasks

<u>Goal</u>: evaluate how subsurface strain measurements can be used to improve the assessment of geomechanical properties and advance an understanding of geomechanical processes that may present risks to CO_2 storage.

Tasks

- 1. Instrument Development
- 2. Theoretical Analysis
- 3. Field Demonstration

<u>Outline</u>

Technical Status Accomplishments Lessons Learned Synergy Summary

Instrument Development

- Multiple components of strain, tilt vector
- Geodetic resolution (~nε, nrad)
- Cost

- → Prototypes
 - Removable multicomponent
 - Expendable, grout-in multicomponent
 - Expendable single component, cheap

Instrument Development

Grout-In Eddy Current System

- Commercial sensor integration
- 2 tilts, 3 horizontal & 1 vertical strain
- ~1 part-per-billion resolution

Areal Optical Interferometer

- Pair of 220 m wrapped fibers
- Welded exterior, fully potted interior
- ~1 part-per-trillion resolution

Instrument Deployments

Local Field Site (Clemson, SC)

Tensor & Tilts

Areal

Injection Analog Site (Avant, OK)

Gladwin Tensor

Tensor & Tilts

Areal

Field Experiment

Objective: Measure/interpret strain during waterflood as analog to CO₂ injection
Location: North Avant Field, Osage County, OK 100+ years of oil production
Reservoir: Basal sand lens, Bartlesville Sandstone
Resevoir Depth: 530 m
Strainmeters: Gladwin, Optical Areal, Eddy Tensor
Strainmeter depth: 30m, 220m E of injection well

Permeable Lens

Analog

AVN3 AVN2 AVN4

AVN Strainmeters

Permeable sand isopach

Field Tests

Shakedown tests

April, 2017 Shut-in at Well 1A, 1km from strainmetersJuly, 2017, 4-hr-long injection into well 9a, shakedownAug, 2017, 4-day-long injection into well 9a, shakedown

Full Tests

Injection into Well 9A, multi-components of strain, reservoir pressure

Start Date	Inject	Recover days	Rate	Wellhead Pressure
	days		(bbl/d)	(psi)
Oct 2017	6	7	300-800	20-50
Nov 2017	3	6	300-700	60-30
March 2018	60	10	50-500	60-130
June 2018	24	20	350-550	5-20

Data Processing: Calibration, tidal correction, barometric correction Evaluate data: Manual calibration, stochastic inversion, analytical

Data Comparison Gladwin—Areal BOFS

Oct 2017 Injection Test

Figure 1. a.) Pressure and injection rate during well 9a injection test in Oct 2017 (upper) CBlue line is the nate used in the simulations that Normal straining CO₂ injection shear strain, and areal strain from Gladwin strainmeter late AVN2a verticalew strain from Eddy Current instrument from Oct 2017 injection test

Oct 2017 Injection Test

Oct 2017 Injection Test

		3D Manual	_
Youngs Modulus	Lens	2	GPa
	Bartlesville	8	GPa
	Confining	2.9	GPa
	Instrument	42	GPa
Poisson's ratio		0.25	_
Permeability	Lens	500	mD
	Bartlesville	5	mD
	Confining	0.01	mD
Lens Thickness		5	m
Lens long axis		580	m
Lens short axis		300	m
Well to boundary1	80	m	
Boundary to instr	140	m	

Sensitivity Analysis Controls on strain

Inversion Approach

Alex Hanna

Stephen Moysey

- infrastructure for parameter estimation using large models w long run times
 - HTC
 - Cloud storage, computing

Current Implementation

Space Filling (exploration)

•Latin Hypercube, Monte Carlo

High Efficiency Minimization (Exploitation)

- •Genetic Algorithms (NSGAII, SPEA2) global
- •Gradient descent local

Uncertainty Evaluation (Exploration)

- •Markov chain Monte Carlo (McMC)
- •Reversible jump McMC

Analytical solutions to poroelastic inclusions

$$\varphi_{\infty}(x, y, z) = \frac{1}{12\pi} \frac{1+\nu}{1-\nu} \int_{V} \frac{\varepsilon_{0}(\mathbf{r}_{1})d^{3}\mathbf{r}_{1}}{|\mathbf{r}-\mathbf{r}_{1}|} \qquad u_{i}^{\infty} = -\frac{\partial\varphi_{0}}{\partial x_{i}}$$

$$u_{i}^{\infty}(x, y, z) = u_{i}^{\infty}(x, y, z) + (3 - 4\nu)u_{i}^{\infty}(x, y, -z) + (-1)^{\delta}2z\frac{\partial}{\partial z}u_{i}^{\infty}(x, y, -z)$$

 $(\delta = 1 \text{ for } i = 1, 2, \text{ and } \delta = 0 \text{ for } i = 3)$

Inclusion with transformation strain represents pressurized reservoir

 u_1

$$\varepsilon_0 = \frac{3(1-2\nu)}{E} \Delta p$$

- Transformation strain distribution from poroelasticity
- Analytical expressions for arbitrary shape of pressurized poroelastic inclusion
- In 2-D, using Mushkelishvili potentials

ŧΖ

- In 3-D, using Goodier potential for *infinite* space and Mindlin-Chen dilation source in *half-space*
- Baseline analysis
 - inclusion of same properties (E, ν) as matrix
- This year

arbitrary pressure distribution inclusion and matrix of different properties dimensionless analysis

Analytical solutions for parameter estimation

- Pressure spatially equilibrates for
- Uniform P = Measured pressure
- Measurement coordinates
- Assumed Poisson ratios
- Data from end of injection
- Levenberg-Marquardt t<1s

 $t \gtrsim$ hours $\Delta p = 0.3$ Mpa (by the end of injection period) x = 0, y = 360 m, z = 30 m $v_{incl} = 0.25, v_{matrix} = 0.25$

-		
	Measured	Simulated
ϵ_{NS}	138	143
ϵ_{EW}	39	46
ε _{zz}	80	62

Parameters

		3D Manual	Analytical	
Youngs Modulus	Lens	2	2	GPa
	Bartlesville	8		GPa
	Confining	2.9	3.1	GPa
	Instrument	42		GPa
Poisson's ratio		0.25	0.25	_
Permeability	Lens	500		mD
	Bartlesville	5		mD
	Confining	0.01		mD
Lens Thickness		5	5.2	m
Lens long axis		580	590	m
Lens short axis		300	290	m
Well to boundary1		80		m
Boundary to instrument		140	70	m

Geometry

Characterizing and Interpreting the In Situ Strain Tensor During CO₂ injection Aug 15, 2018 NETL Carbon Storage Review

Accomplishments to Date

– Instruments

- 4 new strainmeters designed, built, deployed
- Data available, https://www.unavco.org/instrumentation/networks/status/pbo/overview/AVN2
- Analyses
 - Understanding factors affecting strain signal
 - Cloud-based optimization method developed
 - Inversion of field data demonstrated
 - Analytical solution derived, demonstrated

Field demo

- Gladwin, areal, tensor strainmeters working at Avant Field
- 4 injection tests with full strain and pressure data
- Simulations match field data, geologic model
- Strain data used to advance understanding of properties, heterogeneity, pressure.

Synergy Opportunities with other talks in the session

– Strain during injection → fault slip

- Critical stess
- Reactivation
- Rheology
- Leakage along faults
- Field projects
 - Fluid injection
 - Fault slip
 - Hydraulic fracturing
- Knowledge from Noise

Summary

Measure and interpret strain tensor during injection

-Instruments

• Multiple Prototypes built, installed, working. Data available

-Analysis

• Interpret using inversion of numerical simulations, analytical solution soon

-Field demo

- Working strainmeters at Avant Field site
- 4 injection tests, data obtained, results similar to simulations, interpretation ongoing

Strain from Fluid Injection/Recovery

Damaged home, Prague, OK

Earthquakes (red) and injection wells (grey)

Deformed well casing

Subsidence, Central Valley CA

Strain field in the vicinity of an injection well

Lessons Learned

Technical Background signals "Robust" instrumentation Logistics Well field operation Accessibility, $SC \leftarrow \rightarrow OK$ Land owner, mineral rights Communication Multiple PIs, Industry partners

Benefit to the Program

Contribute to <u>Area of Interest 1 – Geomechanical Research</u> by developing and demonstrating innovative instrumentation and theoretical techniques for characterizing the strain field resulting from injection (Research Need 3)

Carbon Storage Program goal to support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.

Benefits Statement: The proposed project will contribute to <u>Area of Interest 1 – Geomechanical Research</u> by developing and demonstrating innovative instrumentation and theoretical techniques for characterizing the strain field resulting from injection (Research Need 3). The field data and inversion method will advance characterization of geomechanical properties and evaluation of stress change throughout the formation, including in the vicinity of faults and lithologic contacts. These contributions will improve the reliability of theoretical models, thereby advancing estimates of storage capacity and assisting in future monitoring decisions and risk assessment. Preliminary analyses of the proposed method demonstrate an improvement in accuracy of property estimates by an order of magnitude (from 25% to a ~1%) and a reduction in uncertainty by more than 50%, relative to baseline methods. These improvements contribute to the Carbon Storage Program goal to support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.

Project Overview: Goals and Objectives

<u>Overall Goal</u>: evaluate how subsurface strain measurements can be used to improve the assessment of geomechanical properties and advance an understanding of geomechanical processes that may present risks to CO2 storage.

Instrument Development Task Design/build instrumentation for measuring the in-situ strain tensor and evaluate performance characteristics relative to the existing state of the art.

<u>Theoretical Analysis Task</u> Develop theoretical analyses for characterizing the strain field associated with injection in the vicinity of critical features, such as contacts and faults, and then develop and demonstrate innovative methods for inverting these data to provide a quantitative interpretation.

Field Demonstration Task Demonstrate the best available strain measuring instrumentation during a field injection test, interpret the result data, and compare the interpretation with currently available information.

Organization Chart

Gantt Chart

	Year 1				Year 2			Year 3			
	2	3	4	5	6	7	8	9	10	11	12
Task 1.0 Management											
Task 2.0 Instrument	271			- 11					3.1		
2.1 Completion						181		-			_
2.2 Sensor								1	1	Ξ	
2.3 Integration										×.	
2.4 Assessment							0				
Task 3.0 Analysis	I										
3.1 Algorithm						H		-			
3.2 Scenarios											
3.3 Design						1					
Task 4.0 Field Test			T		T						
4.1 Workplan											
4.2 Deployment										_	
4.3 Injection Test											
4.4 Data analysis							1	=.		-	

F

Bibliography

Murdoch, L.C., Leonid N. Germanovich, Scott J. DeWolf, Stephen M.J. Moysey, Alexander C. Hanna, Sihyun Kim, Roger G. Duncan[.] In review by DOE. Using In-Situ Deformation to Monitor CO2 Storage. To be submitted to: International Journal of Greenhouse Gas Control.

DeWolf, Scott and others. In prep. Robust optical fiber areal strainmeters for seismic, hydrologic, and geodetic studies, *Geophysical Research Letters*.

DeWolf, Scott and others. In prep. Permanent and removable integrations of commercial displacement transducers for monitoring subsurface deformation in boreholes, *Review of Scientific Instruments*.

DeWolf, S. and L.C. Murdoch. Clemson University Patent Disclosure 2018-036: An electromagnetic device to measure multiple components of strain in subsurface formations (DE-FE0023313)

DeWolf, S. and L.C. Murdoch. Clemson University Patent Disclosure 2018-037: An optical device to measure one or more strain components in subsurface formations

DeWolf, S. and L.C. Murdoch. Clemson University Patent Disclosure 2018-037: An optical device to measure one or more strain components in subsurface formations (DE-FE0023313 and DE-FE0028292)

DeWolf, S. and L.C. Murdoch. Clemson University Patent Disclosure 2018-039: A polarization and temperature insensitive interferometric optical fiber tiltmeter (DE-FE0028292)

Hanna, A.C., S.M.J. Moysey, L.C. Murdoch, Numerical proof-of-feasibility of using geomechanical measurements to estimate poroelastic parameters, *Geomech. for Energy & Env.*.

Hanna, A.C., S.M.J. Moysey, L.C. Murdoch, Development of a cloud computing framework for multiobjective model calibration and decision support in the geosciences, *Computers and Geosciences*.

Results using horizontal strain

Distribution of parameters E, k Size, location lens

Next

Update forward model Include other data vertical strain, tilt, p Include pilot points

Characterizing and Interpreting the In Situ Strain Tensor During CO₂ injection Aug 15, 2018 NETL Carbon Storage Review F