Zeolite Membrane Reactor for Pre-Combustion Carbon Dioxide Capture

Lie Meng and Jerry Y.S. Lin*

Arizona State University

DOE Award:
DE-FE0026435

2018 NETL CO₂ Capture Technology Project Review Meeting
August 14, 2018, Pittsburgh, Penn
Overview

Timeline

- Project start date: **Oct. 1, 2015**
- Project end date: **Jan. 31, 2019**
- Budget Periods:
 - I: 10/1/2015-7/30/2017
 - II: 8/1/2017-1/31/2019

Budget

- Total project funding
 - DOE $2,760,797
 - Cost-share: $689,963
 - Total: $3,450,760

Research Area

2B2: Bench-Scale Pre-Combustion CO₂ Capture Development and Testing

Partners

- Arizona State University (ASU)
- University of Cincinnati (UC)
- Media and Process Technology, Inc (MPT)
- Nexant, Inc.
- University of Kentucky Applied Energy Research Center
Project Objectives

To demonstrate a bench-scale zeolite membrane reactor (ZMR) for WGS reaction of coal gasification gas for hydrogen production for integration with IGCC power plant.

To evaluate the performance and cost-effectiveness of this new membrane reactor process for use in 550 MW coal-burning IGCC plant with CO$_2$ capture.
Zeolite Membrane Reactor for Water-Gas Shift Reaction for CO₂ Capture

Zeolite Membrane Requirements:

- Operate at 350-550°C
- Chemically stable in H₂S, thermally stable at ~500°C
- H₂ permeance > 1x10⁻⁷ mol/(m².s.Pa) (>300 GPU) with H₂/CO₂ selectivity > 10
DOE Project: Zeolite Membrane Reactor for Pre-Combustion CO$_2$ Capture

Task description

CO + H$_2$O = CO$_2$ + H$_2$

Project Manager
Andrew Jones

PI: Jerry Y.S. Lin

PI: Junhang Dong

PI: Richard Ciora

PI: Gerald Choi

Media and Process Technology Inc.
MFI-type Zeolite
Structure and property

MFI-type Zeolite (Silicalite-1 or ZSM-5)

- Molecular sieving at high temperatures
- Highly chemically and thermally stable (up to 700°C)

Surface and cross-section SEM images of (a, b) templated synthesized random oriented MFI membrane, and (c, d) template-free synthesized random oriented MFI membranes (from Lin lab)

- Tailorable structure
Tubular MFI-type Zeolite Membranes
Membrane preparation and property

in-situ crystallization

CCD modification*

Al₂O₃ tubular support
MFI zeolite membrane
Modified zeolite membrane

OD = 5.7 mm; ID = 4.7 mm
Pore size < 100 nm

25°C: H₂/CO₂ = 0.1-0.4
450°C: H₂/CO₂ = 4.0-5.0

25°C: H₂/CO₂ = 1.5-3.0
450°C: H₂/CO₂ = 10-45

*Catalytic Cracking Decomposition of Methyl-diethoxysilane (MDES)
Scope of work

1) Scaling up ZMRs from lab-scale to bench-scale for combined WGS reaction and H₂ separation

2) Conducting a bench-scale study using these ZMRs for hydrogen production for IGCC with CO₂ capture.

Goal is to demonstrate effective production of H₂ and CO₂ capture by the bench-scale zeolite membrane reactor from a coal gasification syngas at temperatures of 400-550°C and pressures of 20-30 atm:

- Bench-scale zeolite membrane reactor: 21 zeolite membrane tubes of 3.5 ID, 5.7 OD and 25-cm long (active)
- A system producing H₂ at rate of about 2 kg/day, equivalent to a 2 kWₜₐₜ IGCC power plant
General Approach to Scaling up WGS-ZMR

Single-tube zeolite membrane reactor: study WGS up to 30 atm by experiments and modeling

Intermediate-scale zeolite membrane reactor: 3-7 tube membrane module for WGS reaction

Bench-scale zeolite membrane reactor: 21 tube membrane module for WGS reaction at UK-CBTL

Zeolite membrane reactor in IGCC with CO₂ capture - process design and techno-economic analysis
Progress and Accomplishments

- Modeling and Analysis of WGS in Bench-Scale Zeolite Membrane Modules (Task 10.0)
- Fabrication of Large Quality Tubule Supports (Task 11.0)
- Preparation of Large Quantity MFI Zeolite Tubule Membranes for Bench-Scale Module (Task 12.0)
- Design and Fabrication of Bench-Scale Zeolite Membrane Housing (Task 13.0)
- Building Bench-Scale Zeolite Membrane Reactors (Task 14.0)
- Testing WGS Reaction in Bench-Scale Membrane Reactor (Task 15.0)
- Process Design, Techno-Economic and EH&S Analyses (Task 16.0)
Task 10: Modeling and Analysis of WGS in Bench-Scale Zeolite Membrane Modules

Research target for ZMR performance

Feed stream

- syngas mixture

Permeate stream

- H₂ recovery:
 \[R_{H_2} = \frac{F_{H_2, \text{perm}}}{F_{H_2, \text{reten}} + F_{H_2, \text{perm}}} > 92\% \]

- H₂ purity:
 \[G_{H_2} = \frac{F_{H_2, \text{perm}}}{F_{\text{total, perm}}} \]

Retentate stream

- CO₂ capture:
 \[R_{CO_2} = \frac{F_{CO_2, \text{reten}}}{F_{CO_2, \text{reten}} + F_{CO_2, \text{perm}}} > 90\% \]

- CO₂ purity:
 \[G_{CO_2} = \frac{F_{CO_2, \text{reten}}}{F_{\text{total, reten}}} > 95\% \]

CO conversion:

\[X_{CO} = \frac{F_{CO, \text{feed}} - F_{CO, \text{reten}} - F_{CO, \text{perm}}}{F_{CO, \text{feed}}} > 99\% \]
Figure 1. Profile of CO conversion and gas flow rates in zeolite membrane reactor and fixed-bed reactor.

- **(1) Simulated gas**
 - Purity, $G_{H_2} > 84\%$
 - $G_{CO_2} > 99\%$
 - $X_{CO,FBR} < 92\%$
 - $X_{CO,ZMR} > 99\%$

- **(2) Air-blown gasifier syngas**
 - $G_{H_2} > 78\%$
 - $G_{CO_2} < 16\%$
 - $X_{CO,FBR} < 85\%$
 - $X_{CO,ZMR} > 99\%$

- **(3) O_2-blown gasifier syngas**
 - $G_{H_2} > 84\%$
 - $G_{CO_2} > 92\%$
 - $X_{CO,FBR} < 82\%$
 - $X_{CO,ZMR} > 99\%$
• CO conversion: 87.2% → 97.0%.

• Pre-reactor effect: equilibrium conversion a higher H₂ partial pressure for but a lower CO partial pressure.

• Catalyst packing UC: 30%
Simulation: 50%

Figure 2. Profile of CO conversion and gas flow rates in a zeolite membrane reactor with/without a pre-reactor at 450°C. Pressure: 30 bar; Steam/CO mole ratio: 3.0.
Effect of H₂/CO₂ selectivity (GHSV: 14446.5 h⁻¹)

- PR enhances the CO conversion but less enhancement in the CO₂ capture and H₂ purity.
- Increasing GHSVs improves the CO₂ capture ratio significantly.

Effect of GHSV (H₂/CO₂ Selectivity: 10)

Temperature profile (GHSV: 5417.5 h⁻¹)

Inlet temperature: 450°C; Pressure: 30 bar; Steam/CO mole ratio: 3.0.
Task 11: Fabrication of a Large Quantity of Tubular Supports

Tubular Substrate Supply

Over 250 tubular substrates of various types and formulations have been prepared.

<table>
<thead>
<tr>
<th>UC-#</th>
<th>Batch-#</th>
<th>Date shipped</th>
<th>Items</th>
<th>Qty.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td>MPT-4</td>
<td>8/29/2017</td>
<td>1</td>
<td>10</td>
<td>96% Alumina body, 5.7x3.5mm(ODxID), 35cm, outside coated 0.05 µm, 5cm glass glaze on both open ends.</td>
</tr>
<tr>
<td>B6</td>
<td>MPT-5</td>
<td>9/6/2017</td>
<td>1</td>
<td>4</td>
<td>99.9% Alumina body, 5.7x3.5mm(ODxID), 35cm, outside coated 0.05 µm, 5cm glass glaze on both open ends. (These are test pieces for 99.9% Alumina body.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>96% Alumina body, 5.7x1.9mm(ODxID), 35cm, outside coated 0.05 µm, 5cm glass glaze on both open ends. (These are thick-wall substrates.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>96% Alumina body, 5.7x3.5mm(ODxID), 35cm, outside coated 0.05 µm, 5cm glass glaze on the sealed end, 25cm glass on the open end.(For A2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td>99.9% Alumina body, 5.7x3.5mm(ODxID), 10cm, outside coated 0.05 µm, NO glass end seal. (These are test pieces for 99.9% Alumina body.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
<td>96% Alumina body, 5.7x1.9mm(ODxID), 10cm, outside coated 0.05 µm, NO glass end seal. (These are thick-wall substrates.)</td>
</tr>
<tr>
<td>B7</td>
<td>MPT-6</td>
<td>9/21/2017</td>
<td>1</td>
<td>11</td>
<td>96% Alumina body, 5.7x1.9mm(ODxID), 10cm, outside coated 0.05 µm, NO glass end seal. (thick-wall substrate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>12</td>
<td>96% Alumina body, 5.7x1.9mm(ODxID), 10cm, outside coated 0.05 µm, 5cm glass glaze on both open ends. (thick-wall substrate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td>96% Alumina body, 5.7x3.5mm(ODxID), 35cm, outside coated 0.05 µm, 5cm glass glaze on both open ends. (thick-wall substrate)</td>
</tr>
<tr>
<td>B8</td>
<td>MPT-7</td>
<td>10/17/2017</td>
<td>1</td>
<td>38</td>
<td>96% Alumina body, 5.7x2.9mm(ODxID), 10cm, outside coated 0.05 µm, NO glass end seal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td>96% Alumina body, 5.7x2.9mm(ODxID), 35cm, outside coated 0.05 µm, 5cm glass glaze on both open ends</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td>96% Alumina body, 5.7x2.9mm(ODxID), 35cm, outside coated 0.05 µm, 5cm glass glaze on the open and tipped end</td>
</tr>
<tr>
<td>B9</td>
<td>MPT-8</td>
<td>12/7/2017</td>
<td>1</td>
<td>21</td>
<td>96% Alumina body, 5.7x2.9mm(ODxID), 35cm, outside coated 0.05 µm (25cm long), 5cm glass glaze on tipped end, 5cm glass glaze on open end.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>96% Alumina body, 5.7x3.5mm(ODxID), 35cm, outside coated 0.05 µm (5cm long), 5cm glass glaze on tipped end, 25cm glass glaze on open end.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>96% Alumina body, 5.7x3.5mm(ODxID), 35cm, outside coated 0.05 µm (10cm long), 5cm glass glaze on tipped end, 20cm glass glaze on open end.</td>
</tr>
<tr>
<td>B10</td>
<td>MPT-9</td>
<td>1/9/2018</td>
<td>1</td>
<td>18</td>
<td>96% Alumina body, 5.7x2.9mm(ODxID), 35cm, outside coated 0.05 µm (25cm long), 5cm glass glaze on tipped end, 5cm glass glaze on open end.</td>
</tr>
<tr>
<td>B11</td>
<td>MPT-10</td>
<td>3/8/2018</td>
<td>1</td>
<td>4</td>
<td>99-3070, 5.7x3.5mm (ODxID), 3x10in, 1x7in, no top layer/glass glaze</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>99-115, 5.7x3.5mm (ODxID), 1x5in, no top layer/glass glaze</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>99-114, 5.7x3.5mm (ODxID), 1x5in, no top layer/glass glaze</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>23</td>
<td>96%, 5.7x2.9mm (ODxID), 35cm, 5cm glass glaze on the tipped & open ends</td>
</tr>
<tr>
<td>B12</td>
<td>MPT-11</td>
<td>3/22/2018</td>
<td>1</td>
<td>2</td>
<td>99-3070, 5.7x3.5mm (ODxID), 35cm long, no glass end seal</td>
</tr>
<tr>
<td>B13</td>
<td>MPT-12</td>
<td>5/17/2018</td>
<td>1</td>
<td>3</td>
<td>99-3070, 5.7x3.5mm (ODxID), 2x6.5in, 1x7.5in, no top layer/glass glaze, fired at 1650°C</td>
</tr>
<tr>
<td>B14</td>
<td>MPT-13</td>
<td>6/14/2018</td>
<td>1</td>
<td>5</td>
<td>96%-body, 5.7x2.9mm (ODxID), 35cm long, outside coated 0.05 µm, 5cm glass glaze on the open & tipped ends</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>96%-body, 5.7x2.9mm (ODxID), 35cm long, outside coated 0.05 µm (10cm), 5cm glass glaze on the tipped end, 20cm glass on the open end</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>96%-body, 5.7x3.5mm (ODxID), 35cm long, outside coated 0.05 µm (10cm), 5cm glass glaze on the tipped end, 20cm glass on the open end</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>96%-body, 5.7x2.9mm (ODxID), 35cm long, outside coated 0.05 µm (5cm), 5cm glass glaze on the tipped end, 25cm glass on the open end</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
<td>96%-body, 5.7x3.5mm (ODxID), 35cm long, outside coated 0.05 µm (5cm), 5cm glass glaze on the tipped end, 25cm glass on the open end</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>96%-body, 5.7x3.5mm (ODxID), 35cm long, outside coated 0.05 µm (25cm), 5cm glass glaze on two open ends</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>200</td>
<td>200 grams MPT-114-99% powders, for discs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6/14/2018 ASU</td>
<td>1 200 grams MPT-114-99% powders, for discs (Shipped to Lie Meng, ASU)</td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>MPT-14</td>
<td>7/2/2018</td>
<td>1</td>
<td>23</td>
<td>96%-body, 5.7x3.5mm (ODxID), 35cm long, outside coated 0.05 µm, 5cm glass glaze on the open & tipped ends</td>
</tr>
</tbody>
</table>

Total = 258
Task 12: Preparation of Large Quantity Zeolite Membranes for Bench-Scale Module

Alumina leaching in the synthesis of MFI zeolite membranes

(a) MPT disk (b) A-16 SG disk

microscope digital images

XRD patterns

A-16 SG: 100% MPT: 0%
A-16 SG: 75% MPT: 25%
A-16 SG: 50% MPT: 50%
A-16 SG: 25% MPT: 75%
A-16 SG: 0% MPT: 100%

Bi-layer
in-situ crystallization at 180°C, 3 hours using 0.055 SiO₂: 0.0058 NaOH: 0.017 TPAOH: 0.92 H₂O

High Al content was found in the MFI zeolite formed in the synthesis of zeolite membranes supported by disks pressed with MPT powder.

Figure 4. Al/Si ratio in powders collected at the bottom of autoclaves for in-situ synthesis of MFI zeolite membranes supported by varied disks.
Task 12: Preparation of Large Quantity Zeolite Membranes for Bench-Scale Module

Quality of modified tubular MFI zeolite membranes

- Crystal size: 600 nm
- Layer thickness: 5-8 μm
- Excellent surface coverage
- 75% membrane reproducibility

Knudsen factor ~ 4.7

H₂/CO₂ separation selectivity

H₂ permeance (mol/(Pa·m²·s))

- 1
- 2
- 3
Task 13: Design and Fabrication of Bench-Scale Zeolite Membrane Module Housing
On-going work: design of bench-scale membrane module

Module material: SS316

21-Tubule Membrane Bundles
- Bench scale testing
- H₂ production rate > 30 L/min
- Mesh number > 1,000,000

Zeolite Membrane Reactor
Pending to be optimized
- Module configuration
- Catalyst loading
- Operation conditions
Task 14: Building Bench-Scale Zeolite Membrane Reactors
Fabrication and evaluation of WGS catalyst for bench-scale WGS reaction

Kinetic model for the Co-Mo catalyst in the high-temperature WGS

Reaction pathway of WGS over Co-Mo catalysts

Sulfidation (pre-treatment):

\[\text{MoO}_3 + 2\text{H}_2\text{S} + \text{H}_2 \rightarrow \text{MoS}_2 + 3\text{H}_2\text{O} \]

WGS:

- **R1:** \(\text{MoS}_2 + \text{H}_2\text{O} \rightarrow \text{MoSO} + \text{H}_2\text{S} \)
- **R2:** \(\text{MoSO} + \text{CO} \rightarrow \text{MoS} + \text{CO}_2 \)
- **R3:** \(\text{MoS} + \text{H}_2\text{S} \rightarrow \text{MoS}_2 + \text{H}_2 \)

The power-law model

\[r_{CO} = k_0 \exp\left(\frac{-E_a}{RT} \right) P_{CO}^{a} P_{H_2O}^{b} P_{CO_2}^{c} P_{H_2}^{d} (1 - \beta) \]

\[\beta = \frac{1}{K} \frac{P_{CO_2} P_{H_2}}{P_{CO} P_{H_2O}} \]

SSK-10 catalyst (Co-Mo-Mg(AlO_2)_2)
Determination of power-law model reaction orders

Log-log plots for the effect of CO, H₂O, CO₂, and H₂ partial pressure on reaction rates over Co-Mo catalyst.

\[
r_{CO} = 1.58 \times 10^{-4} \exp\left(\frac{-37.99}{RT}\right) P_{CO}^{0.50} P_{H₂O}^{0.32} P_{CO₂}^{-0.12} P_{H₂}^{-0.11} (1 - \frac{1}{K P_{CO} P_{H₂O}})
\]
Task 14: Building Bench-Scale Zeolite Membrane Reactors
Assembling and Testing Bench Scale Zeolite Membrane Reactor

Thermal Stability Testing of Mock 21-tube Membrane Bundle

Testing Conditions: $T = 450^\circ C; P = 300$ to 350 psig

21-Tube Candle Filter Bundle
- Ceramic Tube Sheet
- Ceramic/Glass Potting

Bundle Leak Rate during Challenge Testing

No leak development in the three major components was observed in nearly 3,500 hours of challenge testing.

Impermeable Ceramic Tip

Bubble test seal. Tighten packing.

Repack graphite seal.

High Temperature Test Housing

Chart:
- Leak Rate, N2 [GPU]
- Time [hours]
Fabrication and Performance Testing of a 3-tube Zeolite Membrane Bundle

3-Tube Candle Filter Bundle (ID: K3-3)

- **Impermeable Ceramic Tip**
- **Zeolite Membrane Layer**
- **Ceramic Tube Sheet and Ceramic/Glass Potting**

Single-gas permeation at 200°C

<table>
<thead>
<tr>
<th></th>
<th>He</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube 70B</td>
<td>1.449</td>
<td>0.811</td>
</tr>
<tr>
<td>Tube 70C</td>
<td>1.336</td>
<td>0.711</td>
</tr>
<tr>
<td>Tube 71C</td>
<td>1.422</td>
<td>0.742</td>
</tr>
<tr>
<td>Tube average</td>
<td>1.400</td>
<td>0.755</td>
</tr>
<tr>
<td>3-tube bundle</td>
<td>1.310</td>
<td>0.707</td>
</tr>
</tbody>
</table>
Task 14: Building Bench-Scale Zeolite Membrane Reactors
Modification and Installation of Bench-Scale Reactor Test Skid

Front View: Oven Chamber with Membrane Test Module and a 3” x 85-tube Membrane Bundle for Perspective

Back View: Major Bench Scale Reactor Test Skid Subsystems
- Pressure Control Panel
- Mass Flow Meter Enclosure
- Reject and Permeate Liquid Knockout Pots
- Steam Injection Subsystem
- Water Sampling Subsystem
- 3” x 85-tube Membrane Bundle

Power Distribution Skid
- Oven Controls
Conclusions

- Mathematical models of WGS-ZMR and Reaction kinetics of WGS catalysts established.
- 25-cm long CCD-modified zeolite membranes scaled up on alumina substrates.
- Multiple-tube ZMRs assembled and evaluated, and test skid for bench-scale test modified.

Acknowledgement

Thank You!