# In-Situ Applied Coatings for Mitigating Gas Hydrate Deposition in Deepwater Operations

Project Number: DE-FE0031578 – Program Manager: Bill Fincham

<u>Carolyn Koh</u>, Marshall Pickarts, Jose Delgado, Hao Qin *Colorado School of Mines* Vinod Veedu, Erika Brown, Oceanit

U.S. Department of Energy

National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

**COLORADO**SCHOOLOF**MINES** 



## **Presentation Outline**

- Technical Status
  - Robust Coatings for Deepwater Operations
    - Mitigating Gas Hydrate & Other FA Solids Deposition
- Accomplishments to Date
- Lessons Learned
- Project Summary





### **TECHNICAL STATUS**





# Hydrates in Flow Assurance

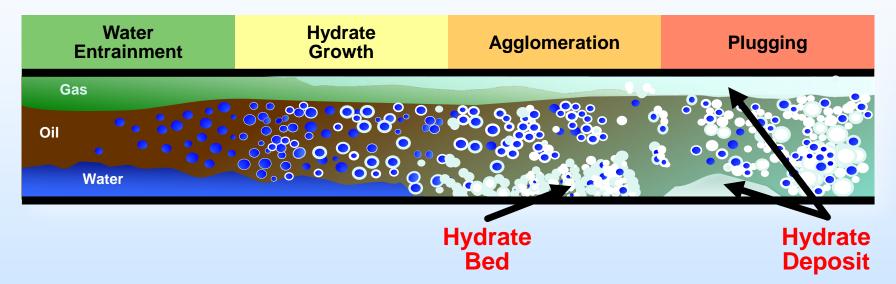
Hydrates Cause Major Economic & Safety Risks During Energy Production & Transportation







Hydrate crystal


- Hydrate formation in oil/gas flowlines
- #1 problem in flow assurance
- Costly to prevent
  - \$1M/mile of pipeline +
     \$100M/year in THI chemicals
- Costly to remove
- Safety concern (pipe rupture, personnel fatalities/injuries, environmental hazards



Koh et al., Annual Reviews, 2011

# Motivation for Hydrate Deposition

#### A Major Outstanding & Critical Flow Assurance Problem



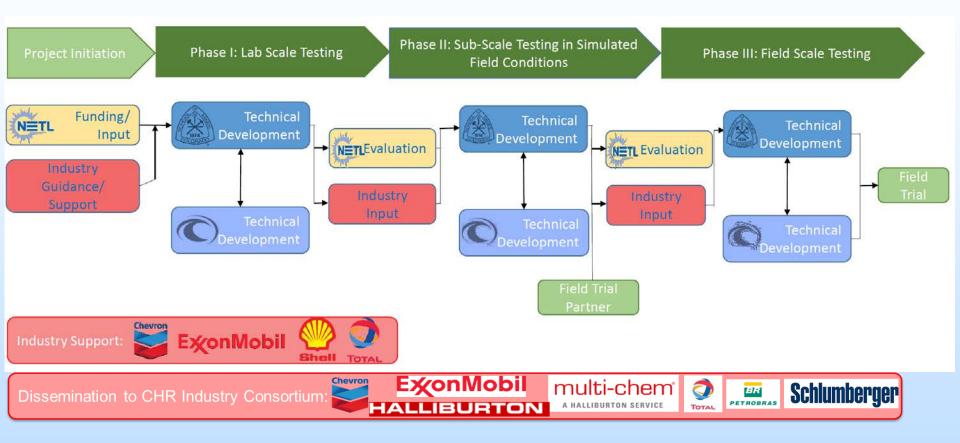
- Flowloop tests show agglomeration alone cannot account for large  $\Delta P$  increase<sup>1</sup>
- ExxonMobil field trial suggests hydrate deposits caused majority of  $\Delta P$  increases<sup>2</sup>

1. Majid, Koh et al., OTC 2017 5

2. Lachance et al., Energy Fuels 2012

# Project Objectives to Address Key FA Technology Challenge

Develop for field & commercial deployment robust pipeline coatings to mitigate hydrate deposition in subsea oil flowlines


- Hydrate-phobic coating system applied in-situ to existing (corroded) pipelines
- Multiphase deposition flowloop evaluations in simulated field conditions
- Investigations under simulated field conditions & field test plans





Sloan & Koh, Clathrate Hydrates of 6 Natural Gases, CRC Press, 2007

# Project Organization for Deployment of Coatings





### Functional Coatings to Reduce Adhesion

#### Salt Fog Exposure (ASTM B117) – 500 hr duration



Uncoated

#### **DragX Treated**

 Water and Oil Repellency

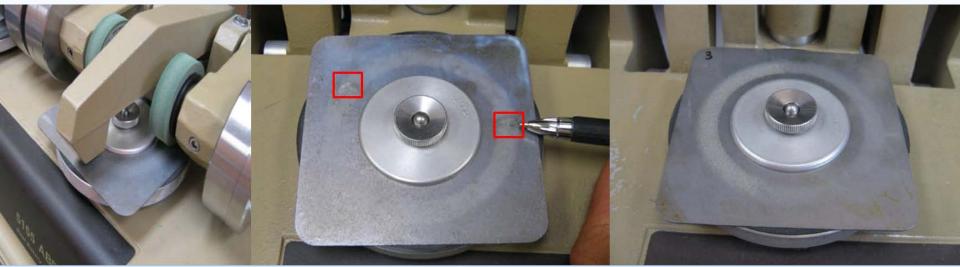
 Uncoated

 Coated

 Water
 Oil



Coated

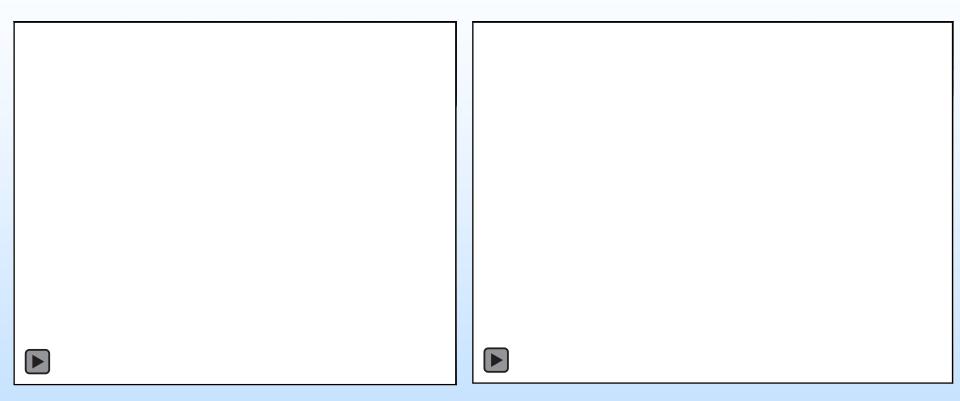







# **Coating Abrasion Resistance**

**Taber Abrader Testing (ASTM D4060)** 




Poorly Adhered Coating (Mass Loss ~ 100mg/1000 cycles) DragX<sup>™</sup> Treatment (Mass Loss ~ 50mg/1000 cycles)

Optimized DragX<sup>TM</sup> formulation passes abrasion testing standard for internal pipeline coating materials. Typical Epoxy 70-85 mg loss/1000 cycles



# Corroded Pipe Surface Coating Reduces Adhesion Forces



Hydrate-phobic coatings can reduce adhesion/deposition



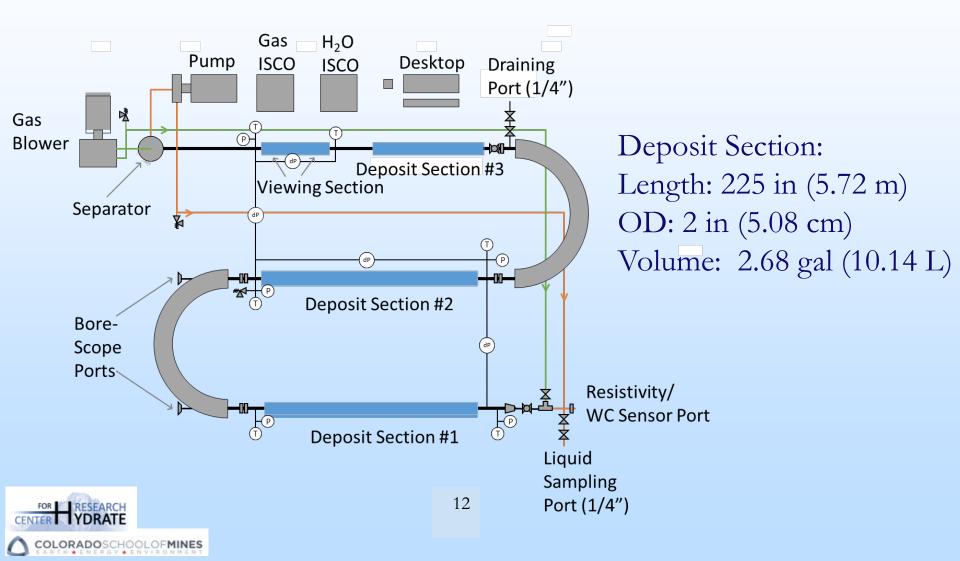


# Corroded Pipe Surface Coating Reduces Adhesion Forces

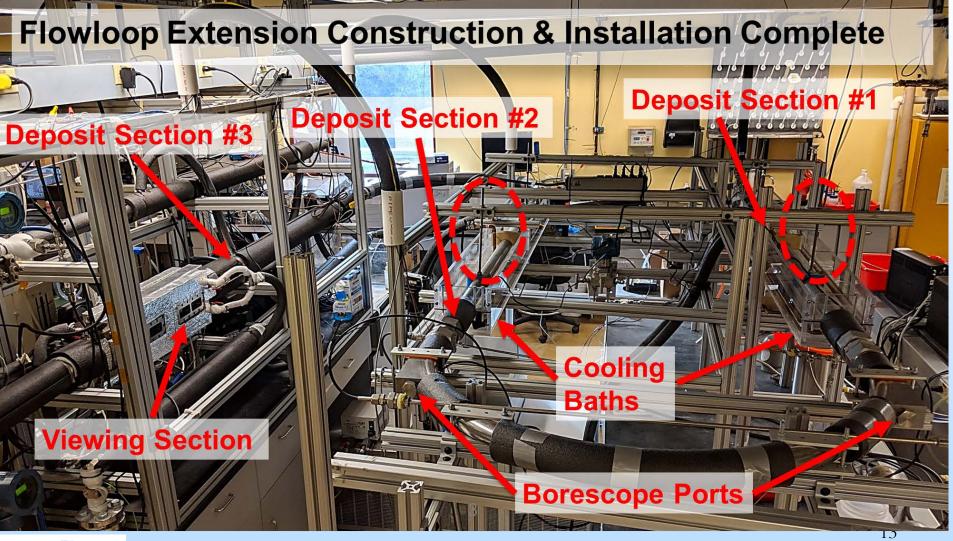


Hydrate deposit formed

No hydrate deposit

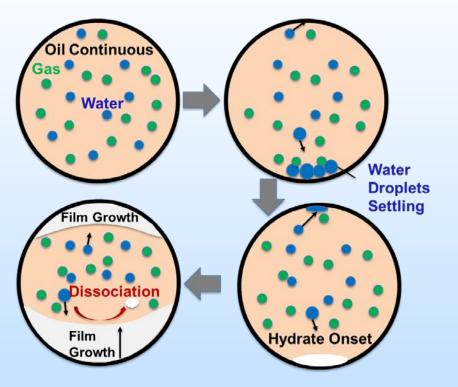

#### Hydrate-phobic coatings resist deposition for 72+ hrs

| Coupon Coated |   | Induction Times [hr] | T <sub>subcoolin</sub><br>g <b>[°C]</b> | Comments             |
|---------------|---|----------------------|-----------------------------------------|----------------------|
| Cell 1        | Ν | 7                    | 10                                      |                      |
| Cell 2, 3     | Y | >147.5, 67           | ~13                                     | Cell 2 No Nucleation |




11

# Hydrate-Phobic Coatings Tests in Deposition Loop




# Hydrate-Phobic Coatings Tests in Deposition Loop

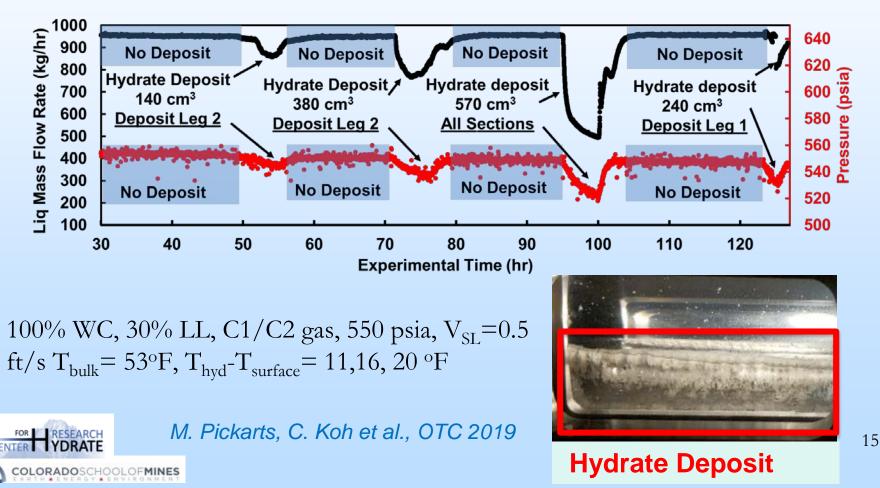


YDRATE

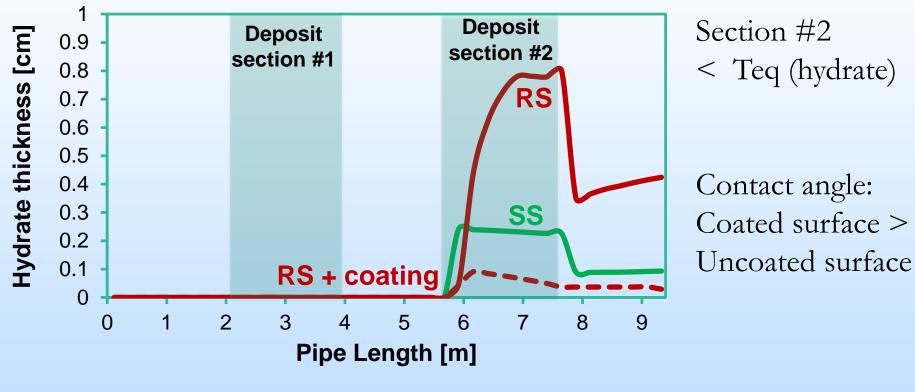
# Hydrate Deposit Formation in Oil-Dominated Systems



H. Qin, M. Pickarts, C. Koh et al., OTC 2018




10% WC, 100% LL, 550 psi, V<sub>SL</sub>=2.8 ft/s T<sub>bulk</sub>=48°F, T<sub>hyd</sub>-T<sub>surface</sub>=18°F



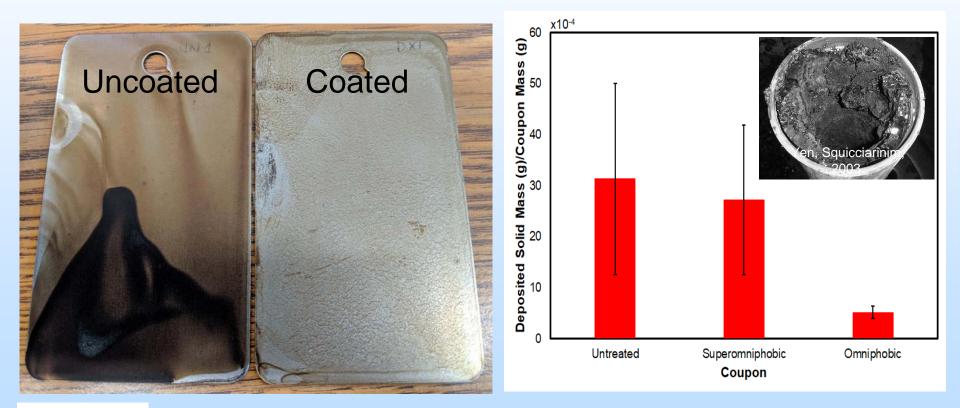

# Hydrate Deposit Formation in Oil-Dominated Systems

• Deposition flowloop data capturing hydrate deposit formation from mass flow (black), loop pressure (red), video imaging.



## Hydrate Deposit Resistance under Simulated Transient Conditions




30% WC, ~100% LL, MO 70T, 24 hr shut-in





# Corroded Pipe Surface Coating Reduces Adhesion Forces

Coatings also reduce asphaltene deposition - a critical FA problem, causing production deferment/losses







# Accomplishments to Date

- Developed larger-scale deposition flowloop to test materials performance under simulated field conditions
  - Loop modification and baseline testing (Milestone A, Task 2)
- Developed coating formulation to mitigate hydrate deposition
   Material design, formulation and optimization (Milestone B, Task 3)
- Flow properties characterization (Task 4)

COLORADOSCHOOLOFMINES

- Gas Hydrate Deposition under Transient Shut-in/Restart Simulated Lab-Scale Conditions (Task 6)
  - Shut-in/restart simulated operations in the deposition loop show higher plugging risks compared to steady-state operations
- Asphaltene and Wax Deposition Testing under Simulated Lab-Scale Conditions (Task 7)



# **Project Summary**

- Hydrate film growth/deposition is a major problem in deepwater operations leading to major economic, environmental & safety risks
- Hydrate-phobic coatings could be applied to corroded pipe surfaces to mitigate hydrate deposition
  - Hydrate-phobic coatings can reduce deposition of hydrates and asphaltenes
  - Large-scale, multiphase flow tests development completed
  - Hydrate & other FA solids resistant coatings for deepwater operations development/testing at transient conditions underway





# Lessons Learned

- Omniphobic surface treatments can resist flow assurance solids deposition, while protecting pipe surfaces from corrosion
- Lower surface roughness combined with surface functionality can resist a variety of species, including gas hydrates and asphaltenes





# Synergy Opportunities

 Hydrate multiphase flow deposition data over range of Deepwater operating conditions could be used for "NETL's Big Data Technologies for Offshore Spill Prevention" (Kelly Rose, NETL-RIC)





# Acknowledgements

- U.S. Department of Energy / NETL for funding & Bill Fincham, Program Manager (Award no.: DE-FE0031578)
- Industry Advisors: Douglas Estanga (Chevron), Mayela Rivero (Total), Doug Turner (ExxonMobil), and Gaurav Bhatnagar (Shell)





#### APPENDIX





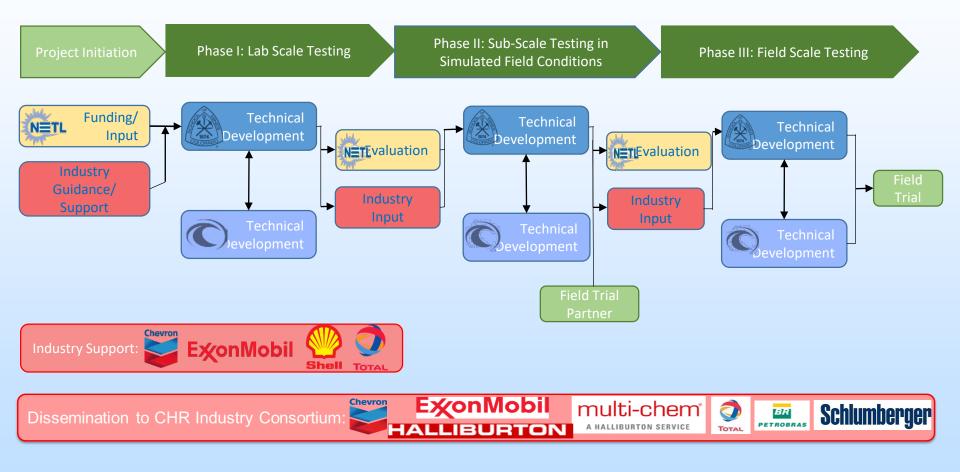
# Benefit to the Program

- The research project is developing and investigating for deployment robust pipeline coatings to mitigate gas hydrate & other FA solids deposition in deepwater oil flowlines, which will be critical in offshore leak and spill prevention. In-situ application is being developed for a range of pipeline conditions, with scale-up to simulated field conditions and multiphase field modeling to prepare for field testing.
- The technology, when successfully demonstrated, will provide mitigation strategies for hydrates & other solids deposition, which are current \$multi-million challenges that can lead to production losses/deferment. This technology contributes to the Offshore leak and spill prevention program.





# **Project Overview**


Goals and Objectives

- Hydrate-phobic coating system applied in-situ to existing pipelines
  - Durability testing (high P, high T, chemical exposure, abrasive conditions) & flow characterization
- Multiphase deposition flowloop evaluations in simulated field conditions for transient shut-in and restart conditions (highest risks to the industry)
- Investigations under simulated field conditions & field trial test plans





# Project Organization Chart for Deployment of Coatings





#### **Gant Chart**

|        |                                                  | Phase I (2018-2019) |       |         | Phase II (2019-2020) |    |    |    | Phase III (2020-2021) |        |        |    |    |
|--------|--------------------------------------------------|---------------------|-------|---------|----------------------|----|----|----|-----------------------|--------|--------|----|----|
| Task # | Task                                             | Q1                  | Q2    | Q3      | Q4                   | Q1 | Q2 | Q3 | Q4                    | Q1     | Q2     | Q3 | Q4 |
| 1.0    | Project Management and Planning                  |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 2.0    | Loop Modification and Baseline Testing           |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 2.1    | Loop Modification                                |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 2.2    | Deposition Experiments                           |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| A      | Flowloop Upgrade Completed                       |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 3.0    | Material Design, Formulation and Optimization    |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 3.1    | Evaluation of Coating Performance                |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 3.2    | Durability and Chemical Compatibility Testing    |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| В      | Coating Formulation Optimized                    |                     | _     |         |                      |    |    |    |                       |        |        |    |    |
| 4.0    | Flow Properties Characterization                 |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 4.1    | Lab Characterization                             |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 4.2    | Flowloop Measurements                            |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 5.0    | Documentation and Reporting                      |                     |       |         |                      |    |    |    |                       |        |        |    |    |
|        | TECHNICAL GO/NO GO DECISION POINT 1              |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 6.0    | Shut-in/Startup Testing                          |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 7.0    | Simulated Fluid Conditions                       |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 7.1    | Adhesion Measurements using Waxes/Asphaltenes    |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 7.2    | Deposition Testing using Waxes/Asphaltenes       |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 8.0    | In Situ Application Method Development           |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 8.1    | Application and Curbing Procedures               |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 8.2    | Development of Quality Control Parameters        |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| С      | In Situ Application Achieved                     |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 9.0    | Design and Planning for Field Tests              |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 9.1    | Site Selection and Experimental Design           |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 9.2    | Multiphase Modeling of Field Site                |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| D      | Field Trial Experimental Plan Developed          |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 10.0   | Documentation and Reporting                      |                     |       |         |                      |    |    |    |                       |        |        |    |    |
|        | TECHNICAL GO/NO GO DECISION POINT 2              |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 11.0   | Loop Scale Testing of Simulated Field Conditions |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 11.1   | Single Component Flowloop Experiments            |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 11.2   | Multi-Component Flwoloop Experiments             |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 12.0   | Long Term Evaluation                             |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 12.1   | Extended Service Guidelines and Durability       |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 12.2   | Compatibility with In-line Tools                 |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| E      | Verify Long Term Coating Durability              |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 13.0   | Initialize Planning for Field Testing            |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| F      | Field Trial Partner/Site Identified              |                     |       |         |                      |    |    |    |                       |        |        |    |    |
| 14.0   | Documentation and Reporting                      |                     |       |         |                      |    |    |    |                       |        |        |    |    |
|        |                                                  |                     | Curre | ent Pro | gress                |    |    |    | Propo                 | osed T | imelin | е  |    |





# Bibliography

 Pickarts, M.A., Brown, E., Delgado-Linares, J., Blanchard, G., Veedu, V., and Koh, C.A., 2019, *Deposition Mitigation in Flowing Systems Using Coatings*. Proceedings of the Offshore Technology Conference, OTC-29380-MS, Houston, TX, May 2019. https://doi.org/10.4043/29380-MS.





# **Coating Durability and Adhesion**

Crosscut tape test (ASTM D3359)





#### Knife adhesion test (ASTM D6677)



Novolac Epoxy Coated

DragX<sup>™</sup> Treatment

DragX<sup>TM</sup> shows no peeling, delamination or bubbling, even when subjected to direct cutting

# Pipeline Fluids, Chemicals & Solvent Compatibility of Coatings

- Flowline fluids: oil, water, brine, natural gas
- Chemicals/solvents: kerosene, xylene, JP8
- Compatibility testing up to 31 days

| Initial                                                                                                         | 31 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Initial  | 31 days                       | Initial  | 31 days    | JP8 - Compound    | Amount |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|----------|------------|-------------------|--------|
| JP8                                                                                                             | JP8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Karosene | Karosene                      | Xylane C | Xylane C   | C8-C9 aliphatic   | 9%     |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               |          |            | hydrocarbons      |        |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               |          |            | C10-C14 aliphatic | 65%    |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               |          |            | hydrocarbons      |        |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               |          | 1 Street 1 | C15-C17 aliphatic | 7%     |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                               |          |            | hydrocarbons      |        |
| A TOTAL OF A | Contraction of the local division of the loc |          | A second second second second |          |            | aromatics         | 18%    |



### **Technical Data**

| Typical Uncured                            | Physical Properties                                                                                           | DragX Treatment                                  |                                                                  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--|--|--|
| Color                                      | Clear/White/Blue                                                                                              | Appearance of Coating Film                       | Clear/White/Blue                                                 |  |  |  |
| Specific Gravity                           | 1.1 g/cm <sup>3</sup>                                                                                         | Maximum Usable Temperature                       | 400°F                                                            |  |  |  |
| Application Methods                        | Spray, Dip, or Flood and Drain                                                                                | Adhesion Test                                    |                                                                  |  |  |  |
| Viscosity                                  | 100 – 5000 c.p. (Tunable)                                                                                     | (ASTM D3359)                                     | 5A after 48 hours                                                |  |  |  |
| Base                                       | Water                                                                                                         | <b>F</b> I                                       |                                                                  |  |  |  |
| VOC Content                                | None                                                                                                          | Flow Assurance*<br>(As conducted by the Colorado | Up to 10-fold reduction in Hydrate                               |  |  |  |
| Shelf Life<br>(Stored Between 50 - 80°F in | >6 months                                                                                                     | School of Mines Center for Hydrates)             | Formation/Adhesion                                               |  |  |  |
| unopened state)                            |                                                                                                               | Salt Fog Corrosion Resistance +                  |                                                                  |  |  |  |
|                                            | ication Properties                                                                                            | Scribing                                         | 1000 + hr<br>< 5% Mass Loss at sand particle<br>impact of 70 m/s |  |  |  |
| Mixing Time                                | Approximately 15 minutes prior to                                                                             | (ASTM B117 + ASTM D1654)<br>Erosion Resistance   |                                                                  |  |  |  |
| (Part A and Part B)                        | application                                                                                                   | (ASTM G76)                                       |                                                                  |  |  |  |
| Time Between Coats                         | Recommended 60 minutes between coats.                                                                         | Wear Resistance<br>(ASTM D4060)                  | 50mg / 1000 cycles / 1 kg                                        |  |  |  |
| Coating Window                             | Additional recoats can be applied for up<br>to 72 hours from first application/mixing<br>of Part A and Part B | Chemical Compatibility Tested (No                | Acidic Conditions (pH < 2)<br>Alkaline Conditions (pH >11)       |  |  |  |
| Full Cure Time                             | Less than two hours                                                                                           | Reactivity)                                      | Acid Gas ( $> 1000 \text{ ppm CO}_2$ )                           |  |  |  |
| Coating Thickness                          | 1-4 mils recommended                                                                                          |                                                  | Sour Gas ( > 4 ppm $H_2S$ )                                      |  |  |  |
| Applicable Surfaces                        | Metals, concrete, composites, etc.                                                                            | Surface Roughness After Application              | 60-120 µinch                                                     |  |  |  |

