Enabling 10 mol/kg swing capacity in postcombustion CO₂ capture processes

Krista S. Walton

Yoshiaki Kawajiri, Matthew J. Realff, David S. Sholl, Ryan P. Lively Stephen J. DeWitt, Rohan Awati, Jongwoo Park, Eli Carter, Hector Rubiera Landa

> Georgia Institute of Technology School of Chemical & Biomolecular Engineering Atlanta, GA 30332

BM Sanderson, BC O'Neill, C Tebaldi, *Geophysical Research Letters* 2017 RP Lively, MJ Realff. *AIChE J.* 2016

eorgia | School of Chemical & Tech || Biomolecular Engineering

Adsorption (and membranes) are materials-enabled separations

2

SH Pang, CW Jones et al., J. Am. Chem. Soc., 2017, 139, 3627-3630

Adsorption (and membranes) are materials-enabled separations

3

SH Pang, CW Jones et al., J. Am. Chem. Soc., 2017, 139, 3627-3630

Adsorption (and membranes) are materials-enabled separations

Connecting materials to engineering solutions—fibers lead the way

Connecting materials to engineering solutions—fibers lead the way

WJ Koros, RP Lively. AIChE J. 2012, 58(9)

Connecting materials to engineering solutions—fibers lead the way

WJ Koros, RP Lively. AIChE J. 2012, 58(9)

Rapid thermal swing adsorption—amines/hollow fiber sorbents[®]

Key question: Can we increase swing capacity by 10x and reduce cycle time by 5x to dramatically drive down adsorbent costs?

Y Fan, CW Jones et al., Int. J. Greenhouse Gas Control 2014, 21, 61-71

Rapidly cycled pressure swing adsorption using MOFs

Cycle times of ~20 seconds are common for industrial RCPSA (>5x faster than RTSA)

Rapidly cycled pressure swing adsorption using MOFs

Cycle times of ~20 seconds are common for industrial RCPSA (>5x faster than RTSA)

10

J Park, RP Lively, DS Sholl, J. Mater. Chem. A. 2017, 5, 12258-12265

Rapidly cycled pressure swing adsorption using MOFs

Cycle times of ~20 seconds are common for industrial RCPSA (>5x faster than RTSA)

Enabling 10 mol/kg swing capacities via flue gas pretreatment

-liquefaction

Hollow fiber membrane

T= -40°C, P=200 psig

12

 N_2

Power

recovery

Enabling 10 mol/kg swing capacities via flue gas pretreatment

T= -40°C, P=200 psig

Enabling 10 mol/kg swing capacities via flue gas pretreatment

Air Liquide Sub-Ambient Membrane System

Sub-Ambient Adsorption System

Key parameters: swing capacity & selectivity

D Hasse, S Kulkarni et al., Energy Procedia, 2013, 37, 993-1003

- DOE guideline: 90% CO₂ removal from flue gas
- Total heat integration with no external cold (i.e., refrigerant) or hot (i.e., steam) utility
- Costs between \$35-\$45/tonne CO₂
- Parasitic loads of 18-30%

Enabling 10 mol/kg swing capacities: Potential MOF candidates

[3] L Hamon, GD Weireld et al., J. Am. Chem. Soc. 2009, 131, 8775-8777

Complexities of developing engineering solutions for postcombustion CO₂ capture (next 4 slides)

Unpublished data

Georgia School of Chemical & Tech Biomolecular Engineering

Unpublished data

Georgia School of Chemical & Tech Biomolecular Engineering

BR Pimentel, RP Lively et al., Ind. Eng. Chem. Res. 2017, 56(17), 5070-5077

BR Pimentel, RP Lively et al., Ind. Eng. Chem. Res. 2017, 56(17), 5070-5077

Georgia School of Chemical & Tech Biomolecular Engineering

Complexities: Contaminants and Stability

Complexities: Contaminants and Stability

Complexities: Cycle optimization and systems engineering²⁹

Unpublished data

Georgia School of Chemical & Tech Biomolecular Engineering

Complexities: Cycle optimization and systems engineering 30

5 years equipment lifespan	
Parasitic load	\$/tonne CO ₂
100 MW (18%)	37
137.4 MW (25%)	41
165 MW (30%)	44

Georgia School of Chemical & Tech Biomolecular Engineering

Unpublished data

Conclusions and perspectives

Key question: Can we increase swing capacity by 10x and reduce cycle time by 5x to dramatically drive down adsorbent costs?

 Combining RCPSA cycles with appropriate metal-organic frameworks in sub-ambient conditions results in highly productive adsorption systems (i.e., tonne CO₂/tonne adsorbent-day)

- Significant "real world" complexities exist, but hollow fiber sorbent platform provides solutions to many of these (scalability, transport limitations, etc.)
- Costs in the range of <u>\$35-\$45/tonne CO₂</u> may be achievable using these materials in this process concept, but significant work remains

Process Scope—Key Topics, BP3 (Jan 18-Dec 18)

<u>Eight major activity areas for BP2:</u> Task 15.0: Process flowsheet refinement —Ongoing, 80% complete

Task 16.0: Generate >250 g/quarter of UiO-66 and spin fibers —Ongoing, 80% complete

Task 17.0: Construct/test RCPSA system for dirty gas testing—Ongoing, 50% complete

- Task 18.0: Model Validation for fiber module —Complete
- Task 19.0: Monolithic Fiber sorbent stability in dirty gases —Ongoing, 25% complete
- Task 20.0: Composite (PCM containing) fiber testing in sub-ambient PSA—Complete
- Task 21.0: Sub-ambient Technical Feasibility Study Ongoing, 50% complete
- Task 22.0: Large module testing in sub-ambient PSA Task Initiated this quarter

Collaborators and funding

Collaborators

- Yoshiaki Kawajiri (GT)
- Ryan Lively (GT)
- Matthew Realff (GT)
- David Sholl (GT)
- Eli Carter

Georgia School of Chemical & Tech Biomolecular Engineering