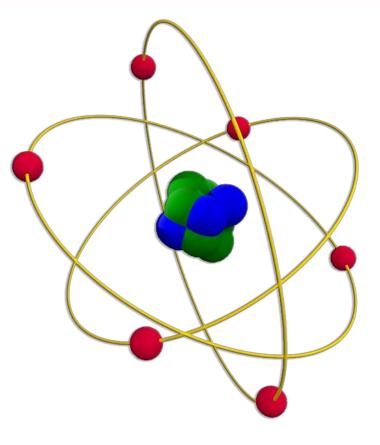


Large Pilot Testing of Linde-BASF Advanced Post-Combustion CO₂ Capture Technology at a Coal-Fired Power Plant Phase I

DOE/NETL Funding Award DE-FE0031581

Presenter: Kevin C OBrien, PhD Director, Illinois Sustainable Technology Center Director, Illinois State Water Survey Prairie Research Institute University of Illinois, Urbana-Champaign


2018 NETL CO₂ CAPTURE TECHNOLOGY PROJECT REVIEW MEETING AUGUST 13-17, 2018 PITTSBURGH, PA

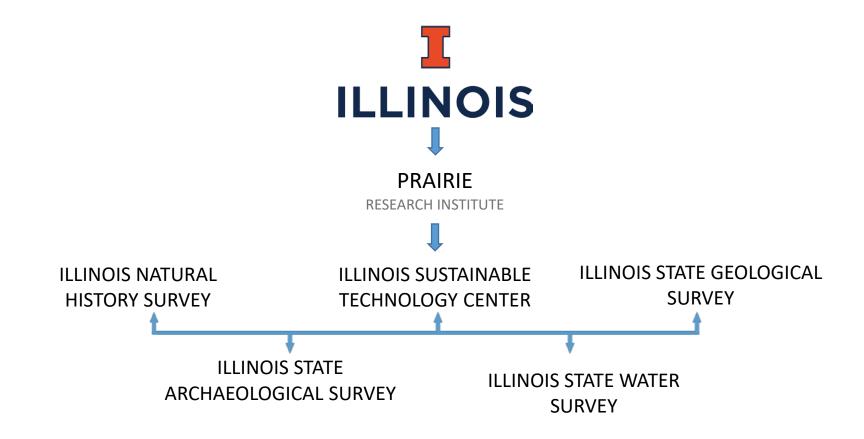
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Funding, Objectives, Tasks, Timelines **PROJECT OVERVIEW**

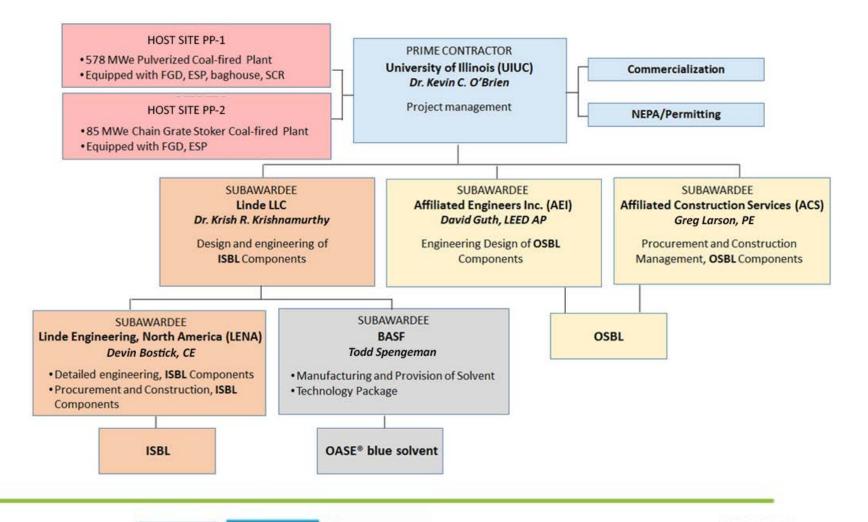
Overall Project Objectives

- Demonstrate a cost-effective technology to remove >90 percent of CO₂ at >99 percent purity scaled up to 10 MWe at an existing coal-fired power plant.
- Demonstrate the feasibility of transferring this scaled-up technology to other existing coal-fired power plants.
- Advance the Technology Readiness Level (TRL) of carbon-capture systems towards commercialization encompassing six critical carbon capture plant subsystems.
- Beneficially influence energy cost and grid reliability regardless of fuel used or power plant age.


Phase I Objectives

- Establish feasibility of installing a 10 MWe capture facility at one of two potential host sites
- Select a host site
- Complete Environmental Information Volume (EIV) for site
- Obtain commitments from site and team members for Phase II (including NEPA and FEED contractors)
- Update preliminary cost and schedule estimates for Phase II and Phase III
- Secure cost share for Phase II and plan for securing cost share for Phase III

Prairie Research Institute (PRI) at the University of Illinois


Applied scientific research impacts the environment and economy,

Phase I Team

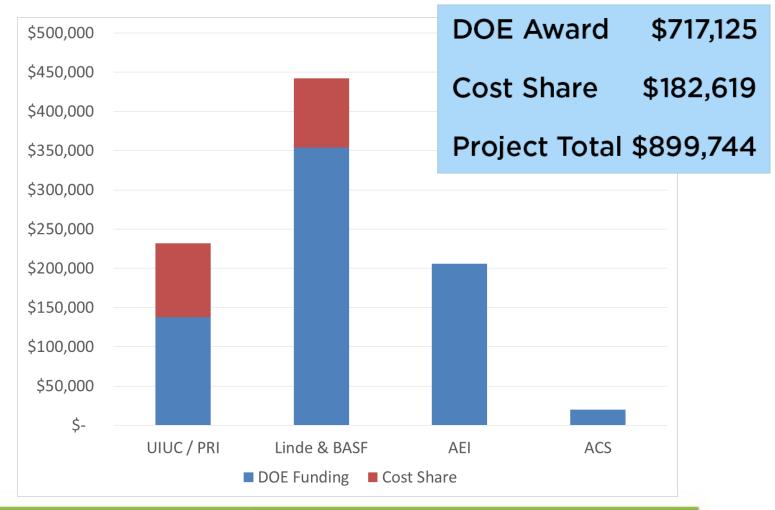
Well-defined roles based on relevant capabilities

NATIONAL

CHNOLOGY

0

D - BASE


Lind

ENERGY AEI Affiliated

Phase I Budget

Reflects Learning from Previous Project

ENERGY AE Affiliated

N

-BASF

Lind

NATIONAL

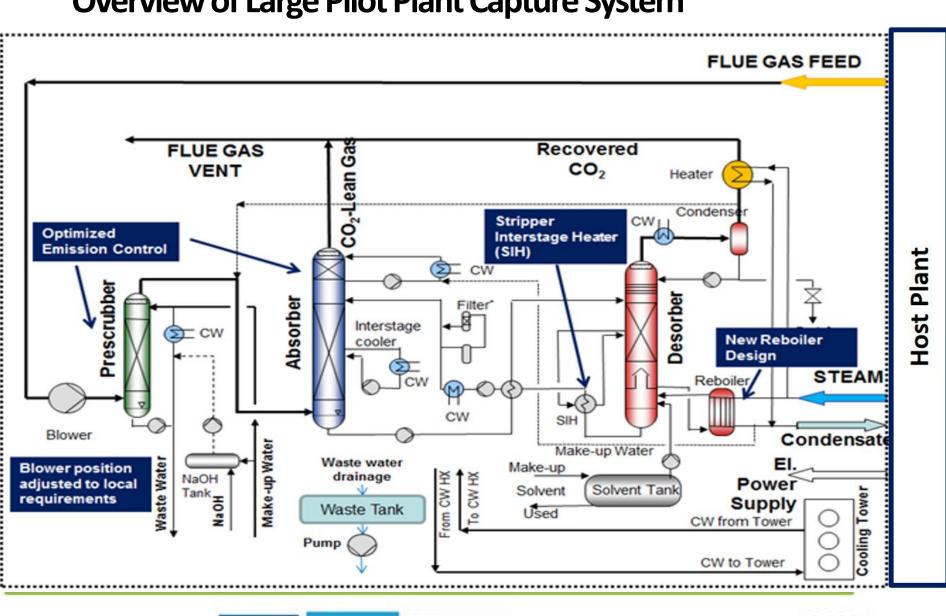
TECHNOLOGY

0

Phase | Milestone Log

Project on track

Budget Period	ID	Task Num ber	Description	Planned Completion Date	Actual Completion Date	Verification Method
1	А	1	Updated Project Management Plan	5/1/2018	4/20/2018	Project Management Plan file
1	В	1	Kickoff Meeting	5/31/2018	5/10/2018	Presentation file
1	С	2	Design and Engineering Site Analysis Complete	12/31/2018		Quarterly RPPR file
1	D	3	NEPA Contractor Selection	12/31/2018		Quarterly RPPR file
1	Е	4	Host Site Selection and Commitment	1/31/2019		Quarterly RPPR file
1	F	5	Phase 1 Topical Report Completed	3/31/2019		Topical Report File
1	QR	1	Quarterly RPPR report	Each quarter		RPPR files



Background Overview of

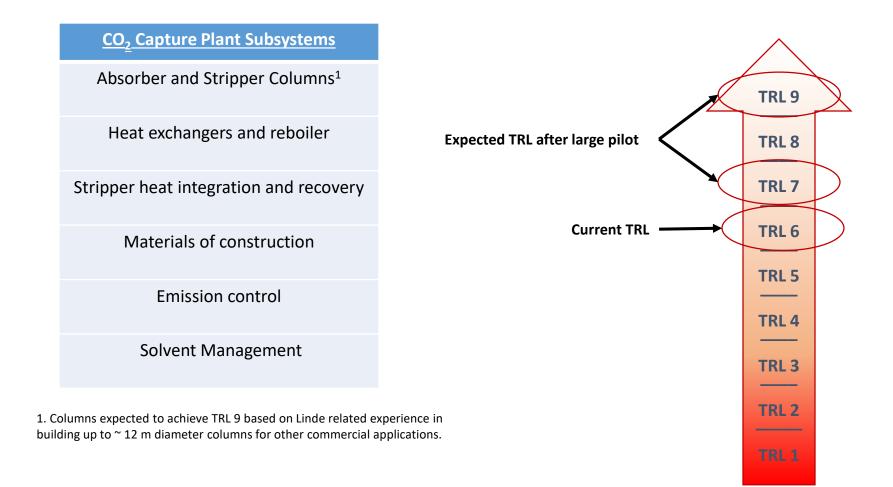
TECHNOLOGY DEVELOPMENT

Overview of Large Pilot Plant Capture System

ILLINOIS Prairie Research Institute

PL

NATIONAL


TECHNOLOGY

D.

ENERGY

Technology Gap Analysis

TRL improvements that would result from large scale pilot

Expected Performance/Cost Summary

Based on 1.5 Mwe pilot test and Aspen Plus simulation results

Parameter	NETL Case 11	NETL Case 12	Linde Case LB1	Linde Case SIH
Scenario	No Capture	CO ₂ Capture with MEA	CO ₂ Capture with OASE [®] blue	CO ₂ Capture with OASE [®] blue and SIH
Net power output (MWe)	550	550	550	550
Gross power output (MWe)	580.3	662.8	638.9	637.6
Coal flow rate (tonne/hr)	186	257	236	232
Net HHV plant efficiency (%)	39.3%	28.4%	30.9%	31.4%
Total overnight cost (\$2011)	1,348	2,415	1,994	1,959
Cost of captured CO ₂ with TS&M (\$/MT)	N/A	67	52	50
Cost of captured CO ₂ without TS&M (\$/MT)	N/A	57	42	40
COE (mills/kWh) with TS&M cost included	81.0	147.3	128.5	126.5

LB1 - Linde-BASF PCC plant incorporating BASF's OASE® blue aqueous amine-based solvent

SIH - New Linde-BASF PCC plant incorporating the same BASF OASE[®] blue solvent featuring an advanced stripper inter-stage heater design



ERG

Project Success Criteria

INTEGRATION WITH HOST SITE

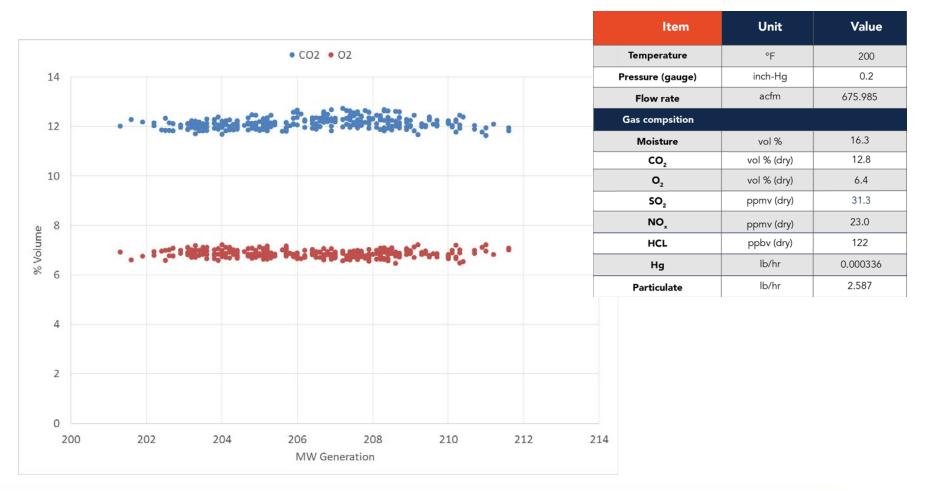
Selecting the Host Site

	Site Selection Criteria
	Flue gas availability
	Flue gas CO_2 concentration
	Aerosol concentration in flue gas
	Steam and utility availability for ISBL
Technical	Design costs for OSBL
rechnical	Available plot size for ISBL
	Use of domestic coal
	Existing abatement equipment (FGD, ESP, SCR, etc.)
	Logistics of transportation and lifting
	Permitting requirements
Regulatory and	Permitting timelines
Environmental	Supports NEPA
	Safety culture
	Cost share commitment
	Contractual terms and conditions
Financial and	Site interest
Business	Sign-off requirements
Agreements	Potential for capture system to permanently remain
	Interest in serving as future training site
	Personnel support and responsiveness

Host Site PP-1

Water and power supplier

Imagery ©2018 Google, Map data ©2018 Google 100 ft



Stack Gas Measurements at PP-1

Values compare well to traditional PC plant

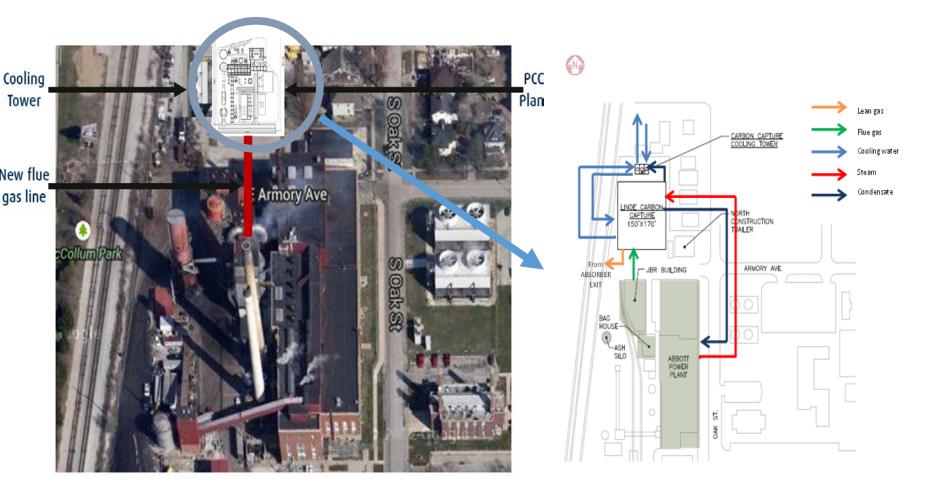
N

Host Site PP-2

- Three coal-based boilers; four natural gas
- Separate treatment system for each fuel
- Testing will run two coal boilers (IL high-sulfur coal)
- Electrostatic precipitators and a wet Flue Gas Desulfurizer (FGD) in place

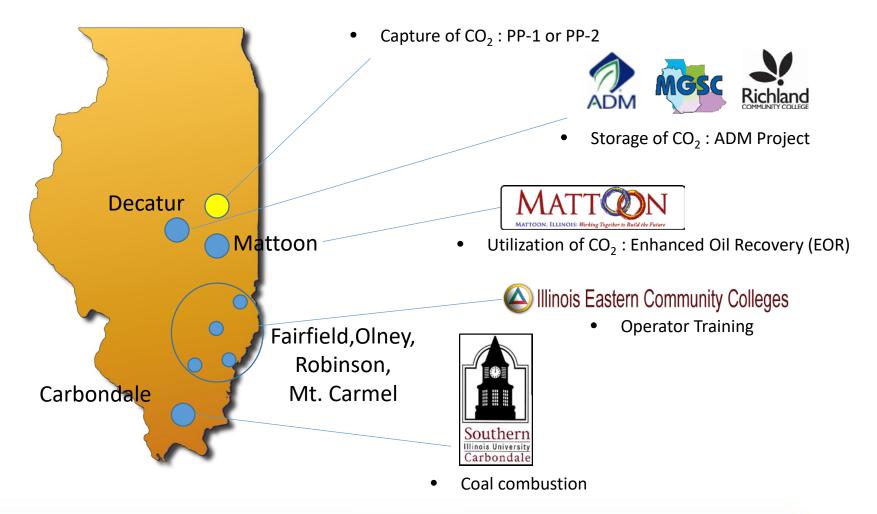
- BASE

 Tradition of evaluating and showcasing new emission technologies


Research Institute

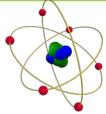
ENERGY

PP-2 Carbon Capture Plant Site Evaluated



Regional & Global Test Bed for CCUS

CI-BASE


Concentration of natural resources and intellectual capital

ENERGY

Acknowledgements

Name	Organization		
Andrew Jones	National Energy Technology Laboratory / US Department of Energy		
Yongqi Lu, Vinod Patel, Randy Locke, Tom Durbin, Jim Dexter	PRI / University of Illinois		
Krish Krishnamurthy, Devin Bostock	Linde		
Todd Spengeman	BASF		
David Guth	Affiliated Engineers Inc.		
Greg Larson	Affiliated Construction Services, Inc.		

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0031581

