PHASE II:

Large Pilot Testing of Linde-BASF Advanced Post-Combustion CO₂ Capture Technology at a Coal-Fired Power Plant (FE0031581)

Kevin C OBrien, PhD Director, Illinois Sustainable Technology Center Director, Illinois State Water Survey Prairie Research Institute University of Illinois at Urbana-Champaign

DOE/NETL 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting Pittsburgh, PA / Aug. 26-30, 2019

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PROJECT OVERVIEW

Funding: \$3,736,684

DOE: \$2,988,359 20% Cost Share: \$748,325 Work Period: Sept. 1, 2019 – Aug. 31, 2020

City Water, Light and Power (CWLP) Springfield, IL

PROJECT OBJECTIVES:

Overall: Design, construct, and operate a 10 MWe capture system based on the Linde / BASF advanced amine-based, post-combustion carbon dioxide (CO₂) capture technology at CWLP Dallman Unit 4, Springfield, IL.

Phase II: Front End Engineering Design (FEED) study along with obtaining necessary regulatory approvals and funds for Build / Operate in Phase III.

Large Pilot Team Management Structure

Well-defined roles based on relevant capabilities

Prairie Research Institute

Capture Technology Evaluated up to 1.5 MWe

TECHNICAL BACKGROUND

ILLINOIS Prairie Research Institute

Solvent and System Designed for Improved Performance

🗆 - BASF

Linde

Reduced capital costs / energy costs

- Optimized BASF OASE[®] blue solvent
- Efficient CO₂ capture from low-pressure sources
- Longer solvent stability
- Lower solvent circulation rate

Notable Linde process improvements

(C, E) Dry bed water wash design to minimize solvent losses

(G) Stripper regeneration at 3.4 bars reducing CO₂ compressor cost and power consumption
(I) Advanced Stripper Interstage Heater to reduce regenerator steam consumption.

ILLINOIS Prairie Research Institute

Project Technology Development 2004-present

Development Scale	Year	Size, MWe	Scale-Up Factor*	Development Strategy
Lab scale: mini pilot tests	2004	0.015		Solvent selection and proof-of-concept under laboratory conditions
Bench scale: Niederaussem	2009	0.45	30	Solvent performance validation and emissions control testing under realistic conditions
Small pilot : NCC	2016	1.5	3	Validation of unique process features aimed at reducing capex, such as high structure packing, gravity-driven absorber inter-stage cooler, and unique reboiler design
Proposed large-scale pilot	2020	10	7	Equipment performance validation at commercially relevant scale (i.e., uniform gas/liquid distribution in absorber and inter-stage heating in the stripper)
First commercial plant	2025	100-250	10-25	At scale demonstration of complete CCS value chain (i.e., capture, compression, transport, and storage/utilization)
nth commercial plant	2030+	500+	2-5	Safe, reliable and economical operation in compliance with regulations

*Scale-up assumes PCC capacity of 20 tpd captured CO_2 for every 1 MWe (flue gas has 13% CO_2 concentration).

Attractive Techno-Economics for Linde / BASF Process

Baseline case: DOE-NETL supercritical PC power plants

Parameter	DOE-NETL Case B12A	DOE-NETL Case B12B	Linde-BASF LB1	Linde-BASF SIH	Linde-BASF WHR
Description	No CO ₂ capture	90% CO ₂ Capture w/ Cansolv PCC process	90% CO ₂ Capture w/ OASE® blue	90% CO ₂ Capture w/ OASE® blue and SIH	90% CO ₂ Capture w/ OASE® blue, SIH, and WHR
Net Power Output (MWe)	550	550	550	550	550
Gross Power Output (MWe)	580	642	630.4	629.3	626.3
Coal flow rate (tonne/hr)	179.2	224.8	221.9	218.5	210
Net HHV plant efficiency (%)	40.70%	32.50%	3297.88%	33.40%	34.73%
Total Overnight Cost (\$2011) (\$/MM)	\$1,379	\$2,384	\$1,970	\$1,950	\$1,921
Cost of CO ₂ captured with T&S (\$/MT)*	N/A	\$68.00	\$53.58	\$52.71	\$51.31
Cost of CO ₂ captured without TGC (\$(MT)*	N/A	\$58.00	\$43.58	\$42.71	\$41.31
COE (\$/MWh) with T&S*	\$82.30	\$142.80	\$127.97	\$126.50	123.63
PCC specific reboiler duty (MJ/kg CO ₂)	N/A	2.48	2.6	2.3	1.5

* T&S: Transport and Storage

Key Phase I Activity

HOST SITE SELECTION

ILLINOIS Prairie Research Institute

Example of the Challenge: Selecting the Host Site

Selection process used in recent Large-Scale Capture Pilot (10 MWe)

	Site Selection Criteria		
	Flue gas availability		
	Flue gas CO_2 concentration		
	Aerosol concentration in flue gas		
	Steam and utility availability for ISBL		
Technical	Design costs for OSBL		
rechnical	Available plot size for ISBL		
	Use of domestic coal		
	Existing abatement equipment (FGD, ESP, SCR, etc.)		
	Logistics of transportation and lifting		
	Permitting requirements		
	<u> </u>		
Regulatory and	Permitting timelines		
Regulatory and Environmental	Permitting timelines Supports NEPA		
Regulatory and Environmental	Permitting timelines Supports NEPA Safety culture		
Regulatory and Environmental	Permitting timelines Supports NEPA Safety culture Cost share commitment		
Regulatory and Environmental	Permitting timelines Supports NEPA Safety culture Cost share commitment Contractual terms and conditions		
Regulatory and Environmental Financial and	Permitting timelines Supports NEPA Safety culture Cost share commitment Contractual terms and conditions Site interest		
Regulatory and Environmental Financial and Business	Permitting timelines Supports NEPA Safety culture Cost share commitment Contractual terms and conditions Site interest Sign-off requirements		
Regulatory and Environmental Financial and Business Agreements	Permitting timelines Supports NEPA Safety culture Cost share commitment Contractual terms and conditions Site interest Sign-off requirements Potential for capture system to permanently remain		
Regulatory and Environmental Financial and Business Agreements	Permitting timelines Supports NEPA Safety culture Cost share commitment Contractual terms and conditions Site interest Sign-off requirements Potential for capture system to permanently remain Interest in serving as future training site		

ILLINOIS Prairie Research Institute

Three Power Plants Evaluated in Phase I

*CWLP was selected for Phase II and Phase III

Abbott Power Plant : UIUC campus

*City Water, Light and Power (CWLP): Springfield

Prairie State Generating Company (PSGC): Marissa

City Water, Light and Power (CWLP)

Water and power supplier for City of Springfield

Phase II

PROJECT MANAGEMENT

ILLINOIS Prairie Research Institute

Project Tasks

Designed for smooth transition to Phase III

Task #	Task
1.0	Project Management and Planning
2.0	Front-End Engineering Design (FEED)
3.0	NEPA / Permitting at Host Site
4.0	Team and Cost Share Commitments for Phase III
5.0	Updated Techno-Economic Analysis (TEA)

Milestones for Phase II

Budget Period	Task Number	Description	Planned Completion Date	Actual Completion Date	Verification Method
1	1	Updated Project Management Plan	8/31/2019		Project Management Plan file
1	2	Finalized FEED study	7/31/2020		Topical Report File
1	3	NEPA and permitting documentation complete	7/31/2020		Topical Report File
1	4	Phase III cost share commitments complete	7/31/2020		Topical Report File
1	5	Updated TEA	7/31/2020		Topical Report File
1	1	Phase II Topical Report Completed	7/31/2020		Topical Report File
1	1	Quarterly RPPR report	Each quarter		RPPR files

ILLINOIS Prairie Research Institute

Success Criteria : Phase II

- **Technical Milestone**: FEED study complete with costs and schedules developed and bid-ready documentation;
- **Regulatory Milestone**: Complete the NEPA process as well as the ability to have permit paperwork ready to be submitted to the appropriate agencies;
- *Financial Milestone*: Cost share commitment in place for Phase III.

Achieving project milestones with updated technoeconomic evaluation enables the project team to smoothly transition to Phase III (Build & Operate).

Probability Impact Matrix : Phase II

ILLINOIS Prairie Research Institute

Risk & Mitigation Strategy: Phase II

Shown for those Medium Probability or greater, and High Impact

Description of Risk	Probability	Impact	Mitigation and Response Strategy
Project Cost Overruns	Medium	High	More of an issue for Phase III, addressed through clear scope definition, supplier / vendor selection, and completion of full engineering prior to procurement
Uncertainty of NEPA determination	Medium	High	Quotes obtained for both CX and EA from NEPA contractor

Identifying Challenges to Phases II & III

None are insurmountable

Challenge to Phase II and Phase III Execution	Team's Response
Aerosol concentrations in the flue gas	Aerosol measurements taken in Phase I indicate the aerosol formation will likely not be an issue for the 10 MWe project and aerosol mitigation technologies are not necessary.
Limited space available for OSBL connections	The off-take and return lines will be made 150 feet above the ground. These factors have been accounted for in OSBL costs from Phase I
Location of flue-gas offtake relative to Continuous Emissions Monitoring System (CEMS)	CEMS inside the stack and access to flue gas after the CEMS requires breach of fiberglass. Therefore, the plan is to return captured gas to the stack where it can be monitored. Discussions with IEPA will continue during Phase II for acceptance.
Permitting timelines	Strong relationships between the applicant and all relevant regulatory agencies will be leveraged for expediency. All permit-related paperwork for Phase III will be completed during Phase II.
Host site commitment	Bipartisan support has been obtained from elected officials at the local, state, and federal level. UIUC has presented at public forums and will continue to engage the public on the progress of the pilot.
Cost share from the state of Illinois	The previous success in obtaining a financial commitment for a large-scale pilot in Illinois demonstrates the willingness of the state to support such a project. Discussions have already been initiated with state and federal elected officials regarding the need for this cost share support. They appreciate the importance of a large-scale capture pilot and see value not only in having the pilot in Illinois, but at a location close to the state Capital.

Prairie Research Institute

IILLINOIS

Phase I

RESULTS FROM PRELIMINARY ENGINEERING

OSBL Challenge at CWLP

Layout of 10 MWe Capture Plant at CWLP

SOUTH END

NORTH END

Overview of Plant Layout at CWLP: South End

ILLINOIS Prairie Research Institute

Overview of Plant Layout at CWLP: North End

ILLINOIS Prairie Research Institute

Projected Views of Absorber, Stripper, and DCC Columns from Interstate 55

Regional & Global Test Bed for CCUS

Linde

Prairie Research Institute

Concentration of natural resources and intellectual capital

Engineers

26

TECHNOLOGY

Acknowledgements

Organization	Name
Andrew Jones	National Energy Technology Laboratory / US Department of Energy
PJ Becker, Deborah Williams	City, Water, Light & Power (CWLP)
Yongqi Lu, Vinod Patel, Jim Dexter, Stephanie Brownstein, Chris Lehmann, Margaret Morrison	Prairie Research Institute / University of Illinois
Krish Krishnamurthy, Makini Byron, Devin Bostick	Linde Gas North America
John Nichols	BASF
David Guth	Affiliated Engineers Inc (AEI)
Greg Larson	Affiliated Construction Services (ACS)

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0031581

