Application of Spouting Fluidized Bed to Coal-fueled Pressurized Chemical Looping Combustion (PCLC)

Award # DE-FE0024000 (10/1/2014-9/30/2017)

Kunlei Liu, Amanda Warriner, Liang Kong, Zhen Fan, and Heather Nikolic

> Center for Applied Energy Research University of Kentucky 2540 Research Park Drive Lexington, KY 40511-8410

Chemical Looping Combustion Project Overview

Funding & Performance Dates 70% Government Task Name Finish Task Cost Start Share 1.0 **Project Management and Planning** 9/1/2015 9/30/2018 \$211,951 **Detailed Engineering Design** \$61,269 2.0 9/1/2015 2/29/2016 Budaet 3.0 Large Quantity OC Production 11/16/2015 12/31/2016 \$79,481 Period 1 Fabrication, Installation, & Commissioning of Total 4.0 12/31/2017 \$449,330 3/1/2016 Funding PCLC facilities \$1,000,779 5.0 Performance Verification of Major Components 1/1/2018 3/31/2018 \$69,925 6.0 Parametric Testing 6/30/2018 Budget 4/1/2018 \$61,544 Period 2 7.0 Long Term Testing Campaign 9/30/2018 \$39,649 7/1/2018 8.0 Fate of Sulfur & Fuel Nitrogen Transfer 9/30/2018 \$27,630 4/1/2018 30% Cost Share

Main Objectives

- Validate the coal-fueled PCLC technology that adopts a novel spouted bed to avoid OC (oxygen carrier) agglomeration, to improve plant efficiency, and to reduce process complexity
- Demonstrate an integrated coal-fueled PCLC facility at lab-scale, and via design, fabrication, commissioning, hot testing, and performance validation to address the major technical gaps that impede the application of PCLC in solid fuel power generation

HNOLOGY

CMRG

U.S. DEPARTMENT OF

ENERGY

August 13-17, 2018

2

caer.uky.edu

The Core Technology for CLC

10 kWth at Chalmers

10 kWth at C.S.I.C.

50 kWth at US-NETL

26 10^{27}

100 kWth at Chalmers

140 kW (Vienna Univ. of Tech.)

3 MWth at ALSTOM

2018 NETL CO₂ Capture Technology Project Review Meeting [4] Juan Adanez, Progress in Energy and Combustion Science 38 (2012) 215-282

The Core Technology for CLC

Mature Fluidized Bed (FB) Technology Ina Univ. of

August 13-17, 2018 4

caer.uky.edu

Challenges for CF-CLC

• Slow Gasification

Catalyst-Oxygen Carrier

- Oxygen & heat carrier (Reactivity, oxygen transport)
- Production cost
- Stability, agglomeration, sintering, attrition

• Heat Balance

- Spontaneous process without the requirement of any external heat sources

• Fuel Reactor

- Mixing between OC and fuel particles
- High solid fuel conversion
- Controlling OC reduction
- Heat transfer

caer.uky.edu

Technology Background

CAER Approach – Coal Feeding

Catalytic Oxygen Carrier

- Re-use of aluminum industry byproduct
- Lowers the reaction temperature from 1200-1300°C to 950°C
- Excelerates gasification and syngas/tar reforming
- Verified CuO addition to facilitate autothermal operation

Spouted Bed Fuel Reactor

- Promotes fast pyrolysis, tar cracking and prevents particle agglomeration
- $\checkmark\,$ Reasonable residence time for high carbon conversion

Technical Approach/Project Scope

Long-term Test Campaign Conditions in Order of Operation

Performance Evaluation:

- Percent of carbon slips from fuel reactor to air reactor & carbon capture efficiency
- Combustion efficiency of solid fuel
- Fate of sulfur and nitrogen species
- OC characterization (reactivity, attrition, morphology prior and post operation)
- Ash distribution and interaction with OC
- Solids agglomeration

Additional Areas of Investigation:

- Temperature and pressure distribution along reactor heights
- Mass and energy balances
- Fly ash production and OC attrition rates
- Loopseal fluidization information
- Carbon and OC conversion
- Ash/OC separation

Technical Approach/Project Scope

	Success Criteria		
Budget Period 1	Detailed engineering design package (P&ID, general layout/arrangement, blueprint for Reducer, material and instrument selection, et.al)		
Budget Period 1	Large quantity OC production yields in total 2000 lb OC.		
Budget Period 1	Fabrication, installation & commissioning of the 50 kWth PCLC facilities is complete.		
Budget Period 2	During performance verification & parametric testing five independent parameters will be studied: (1) type of coal/PSD; (2) type of OCs; (3) effect of operation pressures; (4) H_2O/CO_2 ratio of the gasification agent; (5) carbon/OC ratio and OC inventory.		
Budget Period 2	NOx and sulfur-containing gas profile in long term testing campaign and parametric testing.		
Budget Period 2	Achieve 24 hour steady and continuous operation in the long term testing campaign.		

Red Mud OC Produced in Rotary Kiln

Crush strength (N)			
Raw	0.10		
kiln	3.10		
Reference	2.32		
(125-355 μm)			

Heat Balance inside FR

Thermodynamics

 $-Hc/O_2$: heat of combustion of fuel or OC per O₂, for example (at 1000°C):

Fuel	Hc/O ₂	00	Hc/O ₂
CO	-563	$Fe_2O_3 \rightarrow Fe_3O_4$	480
CH ₄	-403	Fe₂O₃→FeO	535
Coal	-416	NiO→Ni	468
H ₂	-498	CuO→Cu	372
С	-395	CuO→Cu ₂ O	260

-Heat must be balanced

- by circulated OC or tune the OC composition
- Avoid High excess heat $(\Delta Hc/O_2)$ to minimize OC circulation

Copper Modified RM OC Performance

- Addition of CuO enhanced the oxygen transfer capacity
- Heat balance and circulation rate between AR and FR could be brought down

Progress: Fate of Coal Impurity Present in Fuel

- Experimental: bituminous and subbituminous fuel, 125-355 µm red mud oxygen carrier, 1 kWth batch unit, 950°C, 50+ hours
- Majority (>70 %) of the sulfur introduced with the fuel emitted as SO₂ at the fuel reactor
 - Most of the nitrogen present in coal was found as NO from the fuel reactor

XRD Patterns of Used & Fresh Red Mud 2018 NETL CO₂ Capture Technology Project Review Meeting

Mass Balance of S & N of 3 Types of Coals

Red mud shown to not react with the impurities to form stable compounds, such as metal sulphides or sulphates

Progress: Installation & Commissioning of the Pilot-scale 50 kWth PCLC Facility

1) Coal and Oxygen Carrier Loading System

2) Vibration Coal Feeder 3) Superheated Steam Generation 4) Oxygen Carrier Loop 2018 NETL CO₂ Capture Technology Project Review Meeting August 13-17, 2018 14

Progress: Installation & Commissioning of the Pilot-scale 50 kWth PCLC Facility

5) Flue Gas & Spent Air Conditioning

<image>

Conditioning &

Analysis

7) Distributed Control System

Acknowledgement

- DOE/NETL
- State of KY via DEDI
- LGE and KU
- Duke
- EPRI
- AEP via KY Power
- EKPC
- State of WY
- Liangyong Chen, Fang Liu and Jinhua Bao