Characterizing Impacts of High Temperature and Pressures in Oxy-Coal Combustion Systems

Department of Energy under Cooperative Agreement No. DE-FE0025168

2018 NETL CO₂ Capture Technology Project Review Meeting Omni William Penn Hotel; Pittsburgh, PA August 14, 2018

Program Overview

Enabling Technologies for Advanced Oxy-Coal Combustion Systems

Characterizing Impacts of High Temperature and Pressures in Oxy-Coal Combustion Systems (HTHP) September, 2015 – August 2018

- Key second generation candidates for CO₂ capture include high temperature and pressurized oxy-firing of coal
- Promising technologies because of potential to increase efficiency, lower capital costs, avoid air ingress and reduce oxygen requirements
- Unquantified challenges exist in the practical utilization of these technologies

Timeline & Budget

Project Month 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

1.0 Project Management & Planning & Reporting
2.0 100 kW OFC no RFG Tests
3.0 1 MW Coal - Oxygen Burner Design & Construction
4.0 1 MW Pulverized Coal Furnace (L1500) Modification
5.0 1 MW Pulverized Coal Furnace (L1500) no RFG Tests
6.0 100 kW Oxy Fuel Combustor (OFC) Particle Tests
7.0 Mechanism Development
8.0 High Temperature Mechanism Validation
9.0 300 kW Pressurized Entrained Flow Gasifier (EFG) Modification
10.0 300 kW Pressurized Combustor Tests

11.0 High Pressure and Particle Mechanism Validation

12.0 Conceptual Furnace Design and Validation

REI Federal Share
 U of U Cost Share
 Jupiter Oxygen Corp. Cost Share

U of U Federal Share
 Praxair Cost Share

Program Approach

Experimental

Modeling

Technical Approach

CFD Tools: GLACIER

- REI's in-house CFD software
- Developed specifically for application to solid fuel fired furnaces and boilers
- 3D, steady-state, turbulent flows
- Coupling between turbulent fluid mechanics, radiative and convective heat transfer, homogeneous and heterogeneous reactions
- Statistical description of particles including particle dispersion
- Pollutant formation kinetics for NO_x, SO_x, CO, Hg and fine particles
- Continually evolving including recent developments for atmospheric pressure and pressurized oxy-coal applications

100 kW Oxy-Fuel Combustor

Radiometers

Radiant Zone

(behind)

P2(0)

P4(0)

P5(0)

P6 (0)

P7 (O)

P8(0)

P9 (O)

Ash Clean Out

Scrubber

Convective Zone

Specifications

- 100 kW (0.25 MBtu/hr) Firing Rate
- Main Burner Zone 20 in x 48 in
- Quartz Windows for Optical Access of Flame
- Vertical Height 12.5 ft
- Horizontal Convective Section 12 ft

Research

- Ash Formation
 - Aerosols •
 - Deposition
 - **Trace Elements**
- Sorbent Development
- Optical Diagnostics
 - Flame, Radiation & Flow Field

Blower

CFD Model Predictions (Validation)

CFD Model Predictions (Validation)

K-type thermocouples located in the top section (3 flush with the inside wall, 3 at the midpoint between the inside wall and outside shell).

Ash aerosol PSD and deposits (vertical, inside and outside)

Horizontal deposits:

Outside deposits: loosely bound, easily removed by vigorous shaking. Inside deposits: tightly bound, removed only by scraping.

Ash aerosol PSD and deposits (vertical, inside and outside)

Horizontal deposits:

Outside deposits: loosely bound, easily removed by vigorous shaking. Inside deposits: tightly bound, removed only by scraping.

1.5 MW CFD-Based Burner Design

Pulverized Coal Combustor (L1500)

THE UNIVERSITY OF UTAH

Leveraging Strengths of Project Partners

Jupiter Oxygen Corporation High Temperature Oxy-Combustion

High Temperature Oxy-Coal Combustion Atmospheric Pressure

High Temperature Oxy-Coal Combustion Atmospheric Pressure

HT Oxy-Coal at Large Scales

Moderating High Radiant Flux

HT Oxy-Coal at Large Scales

Model Predictions of a Novel Approach

HT Oxy-Coal at Large Scales

Model Predictions of a Novel Approach

Oxy Coal Combustion at High Pressure

Conduct experiments at University of Utah's Entrained Flow Pressurized Reactor

Validate simulations of high pressure

300 kW Entrained Flow Pressurized Reactor (EFPR)

- Converted from entrained flow gasifier
- 300 kW (rated) pilot scale
- Max pressure 450 psi
- Coal-water slurry and dry feeding with pure O₂
- Down-fired, self-sustained and no external heating

Conversion from Gasifier to Combustor

Hardware and Instrumentation

Operating Conditions *High Pressure Oxy-Coal with Coal Slurry Feed*

Comparison of Radiometer Measurements and Model 184 kW, 201 psi

- Radiometer post-processor for combustion model
 - Integrates model narrow view radiation flux over field of view of the sensor from the model combustion fields

--- Measurement --- Model

24

Operational Challenges *Slag in the Radiometer Ports*

Before test

Green circles show the area that should be open

Unacceptable

Performance unaffected

Interior Surface Temperature 184 kW, 201 psi

Continuing Technology Development/Commercialization

- Dry Coal Feeding in High Pressure Oxy-Coal Combustion Systems (DOE)
- Jupiter Oxygen oxycoal retrofit for
 Enhanced Coal Bed
 Methane in China

Summary

- Approach developed for modeling larger scale systems include quantifying radiant heat fluxes on near-flame components and adjusting design concepts accordingly
- University of Utah's 300 kW Entrained Flow Gasifier has been converted to a high pressure entrained flow combustor along with significant upgrades to reactor hardware and instrumentation
- Annular burner design produces an elongated heat release profile while still producing peak temperatures above 4500 °F
- High pressure oxy-coal combustion experiments have been completed with a coal-slurry feed
- CFD model predictions of radiant heat flux and refractory surface temperatures show good agreement with measurements
- Unique data collection involving size segregated composition of coal ash aerosol at high pressures
- Full-scale burner design evaluation has resulted in highly successful full-scale implementation; working with Honeywell on commercial version

Acknowledgment

This material is based upon work supported by the Department of Energy under Cooperative Agreement No. DE-FE0025168.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Disclaimer

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United Stales Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

