Project Overview [DE-FE0031709]

Overall Project Objectives

 Develop solid oxide electrolysis process for simultaneous conversion of CO₂ and wet natural gas (WNG) into CO and chemicals/fuels

Funding

- DOE: \$800,000
- Cost Share: \$200,000

Performance Dates

- Start Date: January 1, 2019
- End Date: December 31, 2021

Project Participants

- Ohio University (OHIO) and Consultant (Dr. Hamid Sarv)
- DOE FPM: Mr. David Lang

Proposed CO₂ Utilization Process

Water-

SOEC Design

- Dual cell design
- Effective thermal integration
- Multiple value-added products

Cathode: CO₂ Electrolysis

- Generates CO product
- Research Focus: Transition metal electrocatalyst

Anode: NGL Oxidative Dehydrogenation

- Generates alkenes as products
- Research focus: Mixed-oxide electrocatalysts

CO₂/WNG SOEC

2

SOEC Design

- Dual cell design
- Effective thermal integration
- Multiple value-added products

Cathode: CO₂ Electrolysis

- Generates CO product
- Research Focus: Transition metal electrocatalyst

Anode: NGL Oxidative Dehydrogenation

- Generates alkenes as products
- Research focus: Mixed-oxide electrocatalysts

1. Ind. Eng. Chem. Res. 2017, 56, 6155-6163

2

SOEC Design

- Dual cell design
- Effective thermal integration
- Multiple value-added products

Cathode: CO₂ Electrolysis

- Generates CO product
- Research Focus: Transition metal electrocatalyst

Anode: NGL Oxidative Dehydrogenation

- Generates alkenes as products
- Research focus: Mixed-oxide electrocatalysts

Preliminary CO₂ Electrolysis Results at 750 °C w/ Ni electrode

SOEC Design

- Dual cell design
- Effective thermal integration
- Multiple value-added products

Cathode: CO₂ Electrolysis

- Generates CO product
- Research Focus: Transition metal electrocatalyst

Anode: NGL Oxidative Dehydrogenation

- Generates alkenes as products
- Research focus: Mixed-oxide electrocatalysts

Preliminary e-ODH Results for Select Electrocatalysts with Ethane at 700 °C

Technical Approach

Project Schedule

- Cathode: Demonstrate CO₂ reduction with Faradaic efficiency ≥90% (Sept. 2020)
- Anode: Demonstrate e-ODH catalyst with S_{C2H4} ≥80% (Dec. 2020)

Key Project Success Criteria

- Cathode
 - Faradaic Efficiency: ≥90%
- Anode:
 - $S_{C_2H_4}$: 73-89% for WNG w/ 20-35% C_2H_6

3

- Process
 - Product Cost: <\$23.75/MMBtu
 - GHG Emissions: <50% vs. conventional methods

Catalyst and Electrode Development Plan for CO₂ Electrolysis and NGL Oxidation

alkene conversion

