👯 Center for Applied Energy Research

An Intensified Electro-Catalytic Process for Production of Formic Acid from Power Plant CO₂ Emissions

FE-00031720

Jesse Thompson and Kunlei Liu

University of Kentucky - Center for Applied Energy Research http://www.caer.uky.edu/powergen/home.shtml

Project Overview

- Develop and test a novel electro-catalytic method for the production of high-value formic acid from coal-derived CO₂ as a strategy to offset the cost of CO₂ capture.
- The project will involve the development and testing of an engineered catalyst to selectively reduce CO₂ directly and exclusively to formic acid, along with process intensification aspects of the reactor design.
- Project Period: 1/1/2019 6/30/2021 (30 months)
- Funding: Federal \$800K; CS \$201K; Total \$1M

Carbon

Capture, Utilization, Storage

and Oil and

Gas

Technologies Integrated Review Meeting, Pittsburgh, PA, August 26-30, 2019

Technology Background UKy-CAER Andora Process

To provide a selective and robust process, the UKy-CAER Andora process focuses on:

- 1. Use of a charge transfer mediator to limit the cell voltage and degradation pathways of the electrochemical process
- 2. Separate charging and formic acid production reactors/cells to effectively encapsulate the catalyst and provide a steady stream of formic acid

Carbon Capture, Utilization,

Storage

and

Oil and Gas Technologies Integrated Review Meeting, Pittsburgh, PA, August 26-30, 2019

caer.uky.edu

Technology Background

UKy-CAER Andora Process

Time (h)

Carbon Capture, Utilization, Storage and Oil and Gas Technologies Integrated Review Meeting, Pittsburgh, PA, August 26-30, 2019

Project Summary

Project Schedule: 1/1/2019 – 6/30/2021 (30 months)		
Task	Timeline	Status/Success Criteria
Technology Maturation Plan	-	Initial TMP competed; will continue to update during project
Development of catalysts	Initial 24 months	Long term stability (less than 25% deactivation) at >100hr of continuous operation and formic acid production
Flow-through reactor design, fabrication and commissioning	Initial 24 months	Electrochemical cell carrier charge efficiency of greater than 60%; Production cell capable of supporting flow rate of 2 mL/min during continuous operation
Lab-scale reactor testing	Initial 24 months	Continuous operation of reduction and production cells with a formic acid production of 25 mM and a selectivity of greater than 80%
Life Cycle and Technical and Economic studies	Final 6 months	Demonstrate the proposed process to be a substantive CO_2 mitigation option

Carbon Capture, Utilization, Storage and Oil and Gas Technologies Integrated Review Meeting, Pittsburgh, PA, August 26-30, 2019

Carbon Capture,

Utilization,

Storage

and Oil and Gas

Acknowledgements

- Andy Aureillo
- Professor Yong Hwan Kim
- UKy-CAER Team: James Landon, Ayo Omosebi, Daniel Moreno, Keemia Abad

Technologies Integrated Review Meeting, Pittsburgh, PA, August 26-30, 2019