Advancing Post-Combustion CO₂ Capture through Increased Mass Transfer and Lower Degradation

Increased turbulence and mass transfer with dynamic (hydrophilic/hydrophobic) packing material

Increase CO₂ mass transfer into amine solvents through the development of dynamic polarity packing material that is designed to increase turbulent liquid flow and controlled gas-liquid bubble formation

Packing Side: Develop lower cost column packing to increase mass transfer at the gas-liquid interface using additive manufacturing

Solvent Side: Develop a better understanding of how to manipulate the physical properties of solvents to improve surface wetting, increase mass transfer, and achieve the performance of advanced solvents at significantly lower costs

Emission Side: Develop better ways to control environmental contaminants from escaping CCS systems

Understanding solvent physical properties and the impact of additives

Investigate the impact of additives on the physical properties of solvent and their relationship to bubble formation to boost mass transfer while reducing aerosol formation

Additives may not be homogeneous when added to amine solvents. Additives (red) can cluster on the surface changing the surface tension of the solvent leading to bubble formation

Electrochemical decomposition of nitrosamines

Neutralize nitrosamines derived from amine solvents through development of an electrochemical treatment process

UKy-CAER developed Carbon Xerogel (CX) is a type of mesoporous electrode material

CX has an approximate surface area of 150 m² g⁻¹ with a high adsorption capacity towards nitrosamine compounds

CX shows excellent chemical stability, conductivity, native ion-adsorption capability, and solvent wettability

Power Generation and Utility Fuels Group
caer.uky.edu

Contact information:
jesse.thompson@uky.edu