NETL CO<sub>2</sub>

Capture

Technology Meeting, Pittsburgh, PA, August 13-17, 2018

Application of a Heat Integrated Post-Combustion Carbon Dioxide Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant (FE0007395)

#### Jesse Thompson, Heather Nikolic, James Landon and Kunlei Liu

University of Kentucky - Center for Applied Energy Research http://www.caer.uky.edu/powergen/home.shtml

## Project Summary Accomplishments

- Testing completed on four solvents
- Reduced energy penalty through heat integration
- Reduced capital cost via process intensification

#### **Team Members**

2 MW<sub>th</sub> Pilot-Scale CO<sub>2</sub> Capture Project

KU E.W. Brown Generating Station

#### Sponsored by:

U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Kentucky Department of Energy Development and Independence Carbon Management Research Group University of Kentucky





NETL CO<sub>2</sub>

Capture

Cooperative Agreement DE-FE0007395

## **UKy-CAER Advanced Technology**

#### Motivation:

- Reduced energy penalty and costs
  - Utilization of low grade heat via internal heat pump
    - Secondary air stripper
    - Liquid desiccant for cooling tower
  - Near-zero makeup water for amine loop to save operation costs
  - Advanced Solvents

NETL

echnology Meeting,

Pittsburgh, PA, August 13-17, 2018

D 🖉 🖪 🔍 (~

#### **UKy-CAER Advanced Technology**



## **Small Pilot Project Overview**

- 0.7 MWe (2 MWth) Advanced post-combustion CO<sub>2</sub> capture small pilot
- Modular design
- Host Site at Kentucky Utilities E.W. Brown Generating Station in Harrodsburg, KY, approximately 30 miles from UKy-CAER
- Catch and release program
- Includes several UKy-CAER developed technologies
- Four solvent testing campaigns
  - 30% MEA baseline, H3-1
    CAER, 40% MEA



pture

Technology Meeting,

Pittsburgh,

PA, August 13-17, 2018

#### **Small Pilot Project Performance Dates**

BP1: October 1, 2011 to January 31, 2013 (16 months)

BP2: February 1, 2013 to August 31, 2013 (7 months)

BP3: September 1, 2013 to March 31, 2015 (19 months)

BP4: April 1, 2015 to March 31, 2017 (24 months)

Added Scope: April 1, 2017 to March 31, 2020 (36 months)



Added Scope: Testing of additional advanced solvents, hybrid system with CO<sub>2</sub> pre-concentrating membrane, and new water wash

NETL CO,

#### **BP4 Criteria Met and Project Key Findings**



#### **BP4 Success Criteria - Achieved**

#### A heat-integrated post-combustion CO<sub>2</sub> capture system



Partial CO<sub>2</sub> recycle (10-20% of CO<sub>2</sub> captured) to enhance gaseous CO<sub>2</sub> pressure at the absorber inlet.

## **Summary of TEA**



#### 3<sup>rd</sup> Generation Solvent is Needed

- CAER solvent blend showed good performance at the bench-scale
- Kinetics faster than 2<sup>nd</sup> generation solvent
- 15-30% better than MEA while the cost is only ~2X



NETL CO,

Capture

## Liquid Circulation Rate (L/G)



#### **High Concentration Solvents**

Interest among International Test Center Network (ITCN) members to test opensource amines solvents and solvents at high concentrations: 40% MEA



Aronu, U.E. et al. Chemical Engineering Science, 2011, 66, 6393-6406

👯 Center for Applied Energy Research

#### **Mass Transfer Estimates**



#### 40% MEA Comparison vs 30% MEA (Energy)



- Lower energy at higher 6M MEA concentration at reduced L/G
- Decreased circulation results in 10-15% energy savings

#### 40% MEA Comparison vs 30% MEA (Energy)



Higher cyclic capacity at 40% MEA concentration

#### **Temperature Around L-R Heat Exchanger**

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                      | Cold |
|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                      | Side |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                      | DT   |
| 264      230      34      222      193        268      232      36      224      195        40%      267      232      35      225      195 | 31   |
| 268      232      36      224      195        40%      267      232      35      225      195                                               | 29   |
| 40% 267 232 35 225 195                                                                                                                      | 29   |
|                                                                                                                                             | 30   |
| MEA 270 234 36 226 194                                                                                                                      | 32   |
| 250 218 32 215 191                                                                                                                          | 24   |
| 254 222 32 208 186                                                                                                                          | 22   |
| 30% 255 222 33 209 187                                                                                                                      | 22   |
| MEA 255 221 34 208 186                                                                                                                      | 22   |
| 256 223 33 208 185                                                                                                                          | 23   |

Similar hot side temperature of approach for 30% and 40% MEA

Cold side temperature difference is higher for the 40% runs at the higher (> 250 F) stripper bottom temperatures; but similar for 30% and 40% MEA at equivalent stripper bottom temperatures

NETL CO<sub>2</sub>

Capture

Technology Meeting, Pittsburgh, PA, August 13-17, 2018

#### **Solvent Comparison**

| Performance<br>Compared to<br>30 wt% MEA                                  | Hitachi H3-1                              | CAER                                           | 40% MEA                                   |
|---------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|
| Energy Penalty                                                            | 27% savings                               | 20-25% savings                                 | ~12-15% savings                           |
| Solvent Circulation<br>Rate                                               | ~35-45% reduction                         | ~30% reduction                                 | ~15-20% reduction                         |
| Cyclic Capacity                                                           | ~1.5X                                     | ~1.5X                                          | ~2X                                       |
| Viscosity (40 °C)                                                         | 2.5 – 3X                                  | ~1.5X                                          | ~2X                                       |
| Surface Tension                                                           | ~0.6X                                     | ~1.0X                                          | Similar                                   |
| Degradation                                                               | Low                                       | Low                                            | Similar                                   |
| Solvent Regeneration<br>Energy Measured<br>at Uky-CAER<br>Small Pilot CCS | 1022 Btu/lb CO <sub>2</sub><br>on 0.7 MWe | 1070-1600 BTU/lb<br>CO <sub>2</sub> on 0.7 MWe | 1350 BTU/lb CO <sub>2</sub><br>on 0.7 MWe |

# Hybrid 0.7 MWe CCS Flow Diagram



#### **Additional Modifications**



NETL CO<sub>2</sub> Capture

Technology Meeting, Pittsburgh, PA, August 13-17, 2018

NETL CO2

Capture

Technology Meeting, Pittsburgh, PA, August 13-17, 2018

## **CO<sub>2</sub> Pre-Concentrating Membrane**

MTR membrane skid arrived onsite, has been pressured tested and is ready for installation



#### Water Wash – Nitrosamine Removal



Widger, et.al., Environ. Sci. Technol. 2017, 51, 10913-10922

NETL CO,

pture

Technology Meeting, Pittsburgh, PA, August 13-17, 2018

#### **Remaining Tasks**

1) Water wash testing

#### 2) Pre-concentrating membrane performance evaluation

#### Construction schedule:

Membrane module delivered: June

Column/piping fabrication and installation: September

Electrical and auxiliary installation: November



ç

Technology Meeting,

Pittsburgh, PA, August 13-17, 2018

#### **Key Knowledge Gained**

- Liquid/gas distribution can significantly reduce the absorber efficiency.
- It is important to consider the L/R exchanger performance when reporting and comparing solvent regeneration values.
- Thermal reclaiming may be needed for RCRA element management.



#### **Technology Development Pathway**



NETL CO,

Capture

Technology Meeting, Pittsburgh, PA, August 13-17, 2018

#### Acknowledgements

- José Figueroa and Lynn Brickett, U.S. DOE NETL
- CMRG Members
- Gerald Arnold, David Link, Mahyar Ghorbanian, and Jeff Fraley, LG&E and KU
- UKy-CAER Slipstream Team



