

Emissions Mitigation Technology for Advanced Water-Lean Solvent Based CO₂ Capture Processes

Jak Tanthana, Paul D. Mobley, Aravind V. Rayer, Vijay Gupta, Jonathan W. Thornburg, Ryan T. Chartier, Mustapha Soukri, and Marty A. Lail

> DE-FE0031660 DOE Project Manager: Sai V. Gollakota

Carbon Capture, Utilization, Storage, and Oil & Gas Technologies Integrated Review Meeting

Aug. 26th, 2019

www.rti.org

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Development History for Novel, Non-Aqueous Solvents

Technology Status

- Cumulative DOE funding > \$9 MM and more than \$2 MM funding from RTI industrial partners
- Solvent development work finalized
- Pilot testing completed at SINTEF, Norway and National Carbon Capture Center (NCCC)
- Pre-commercial demonstration (12 MW) planned at Technology Center Mongstad (TCM), Norway in FY20

Key Technical Advantages

Impact

- CO₂ Capture Technology with substantially reduced energy consumption
- Minimum changes to existing process to realize NAS optimal performance
- Commodity-scale production ready

- Long-term potential for large scale CO₂ capture applications
- Commercialization path via process technology licensing
- Application potential for high-efficiency acid gas separations

NAS CO₂ Capture Technology Path to Market

From lab to large scale (12 MW) demonstration through series of projects

NCCC and Tiller Emission results

- Similar emissions levels and species seen at SINTEF and NCCC
- Intercooling reduces emissions by almost 10x
- Largest minor emissions include hydrophobic diluent species and other degradation species

Objective:

Develop and optimize the emission control solutions to reduce the amine emission for advanced, 2nd generation solvent –WLS class

Key Metrics

- Emissions from absorber&desorber
- · Solvent loss and make-up cost reduction
- Technoeconomic and EHS evaluation

Specific Challenges

- Aerosols generation and characterization
- Amine reclaiming unit and process integration
- Organic wash solvent screening

Timeframe:

BP1 10/01/18 to 03/31/20

BP2 04/01/20 to 09/03/21

Budget:

BP1 Federal \$1.7MM Cost Share \$0.4MM BP2 Federal \$1.2 MM Cost Share \$0.4 MM

Potential emissions control technologies for WLS systems to be incorporated at the RTI's BsGAS

Project Team

Team Member	Role	Expertise
	Prime recipient, project management, developer of NAS technology, emissions characterization, solvent screening, ECT design and modeling, and economic analyses	 Effective project management and execution under DOE cooperative agreements Lead developer of NAS CO₂ capture technology Process design, modeling, and engineering capabilities Process technology scale-up and operation from lab to large precommercial demonstration systems Aerosol emissions characterization
THE LINDE GROUP	Technical advisory and contributor to joint-emission report	 Leading industrial gas supplier CO2 capture plant design and pre-commercial scale demonstration Advance front-end emission control equipment design and fabrication
TECHNOLOGY CENTRE MONGSTAD	Technical advisory and EH&S support	 World leading test facility for CO₂ capture EH&S and quality standards

BP1 Tasks and Project Goals

BP1 Tasks

Task 1.0: Project Management and Planning

Task 2.0: Establish emission baseline without ECT

- Aerosol generation at BsGAS
- Baseline measurement
- Empirical model development

Task 3.0: Prototype ECT for WLSs evaluation at RTI's BsGAS

- 2nd wash column and amine recovery process
- Evaluation of BsGAS with ECTs

Project Goals

- Control and manage amine emissions
- Identify emission pathways for WLSs
- Model the amine emission
- Refine Techno-economic analysis
- Gain operational experience on WLS process with ECTs

BP1 Key Tasks

Key Tasks	Approaches/ planned Activities	Planned Completion Date
Develop method to monitor and quantify emissions at the BsGAS	 Install SO₃ injection at BsGAS Particle counter and aerosols quantification equipment tie-in 	Completed
Update BsGAS flow sheet with emission control equipment necessary to reduce amine emissions with > 99% efficiency	 Install, commission, and evaluate ECTs at BsGAS 	Completed
Baseline data for amine emissions using two water-lean solvents	Parametric testing on 2 solvent candidates	08/31/19
Empirical process model for amine emissions from water-lean solvents with < 10% average absolute deviation based on critical process parameters	 Regression on experimental results 	03/31/20
Complete testing of emission reduction performance at BsGAS to demonstrate amine emissions reduction to < 10 ppm	Parametric testing	03/31/20

SO₃ Generator at BsGAS: installation and setup

Characterizing Aerosols: APS/SMPS Setup

SO₃ Generator at BsGAS: Trial runs

Particle concentration Particle mass 1.E+08 1.E+04 1.E+07 1.E+03 1.E+06 1.E+05 1.E+02 dM/dlogDp(1/cm³) dN/dlogDp (1/cm³) 1.E+04 1.E+03 1.E+01 1.E+02 • Absorber Inlet, 0 ppm • Wash Outlet, 0 ppm 1.E+01 • Absorber Inlet, 0 ppm • Absorber Inlet, 3 ppm 1.E+00 • Wash Outlet, 0 ppm • Wash Outlet, 3 ppm • Absorber Inlet, 3 ppm 1.E+00 • Absorber Inlet, 6 ppm • Wash Outlet, 3 ppm • Wash Outlet, 6 ppm Absorber Inlet, 6 ppm 1.E-01 1.E-01 10 100 10 100 Particle Diameter (nm) Particle Diameter (nm)

- Particle concentration and sizes are consistent with literature
- Aerosols grow as they travels through the process
- · Large aerosols carry more mass

SO₃ Generator at BsGAS: Trial runs

Parameters	Units	Low	Medium	High
SO ₃ Injection	ppm	0	3	6
Inlet Saturation Temp	°C	20	25	30
L/G	kg/kg	3	4.5	6
Regenerator Temp	°C	95	105	115
Lean Return Temp	°C	30	40	50
ІС Тор	%	0	50	100
IC Middle	%	0	50	100
IC Lower	%	0	50	100

36 total runs have been scheduled, testing in progress

Amine Recovery: Sorbent Testing

Adsorption

	Adsorption	Regeneration	
Test Length	65 min	65 min	
Sampling	4 min sample, every 10min	4-6min sample, 2 min between sample	
Flow Rate	~4 mL/min 1% amine sol.	2 mL/min Steam	

Regeneration

Working Capacity

- Lab setup used to screen sorbents for amine recovery
- Working capacity at different amine concentrations
 used to evaluate sorbents

- A top candidate was selected with working capacity of ~0.25 g-amine/g-sorbent with 1 wt% amine solution
- Kinetic parameters measured for scaling up to BsGAS system

BsGAS modifications with ECTs

Accomplishments and Path forward

Accomplishments

- Installed SO₃ Generator to generate aerosol with size distribution matches that of the actual coal-fired power plant
- Incorporated APS/SMPS for aerosol characterization and at BsGAS
- Completed detail design for the particulate filters, advanced demister, additional wash column, CO₂ acidification vessels, amine recovery beds.

Path forward

- Complete parametric testing at BsGAS: late Sep
- BsGAS modification: Oct-Nov 2019
- Evaluate the ECTs added to the BsGAS: Jan –Mar 2020
- Empirical model development: Oct-Mar 2020

- Financial support provided by DOE NETL under DE-FE0031660
- DOE Project Manager: Sai Gollakota

- Linde:Project support
- TCM:Project support

Jak Tanthana

Research Chemical Engineer Center of Technology for Energy, Environment & Engineering RTI International <u>jtanthana@rti.org</u> + 1.919.541.7208