

Large Bench-scale Development of a Non-Aqueous Solvent CO₂ Capture Process for Coal-fired Power Plants

Jak Tanthana, S. James Zhou, Paul Mobley, Aravind Rabindran, Mustapha Soukri, Vijay Gupta, and Marty Lail

Thor Mejdell, Andrew Tobiesen, Kristin Lauritsen, Ugo Aronu, Lars Hovdahl

DE-FE0026466 DOE Program Manager: Steve Mascaro

2018 NETL CO₂ Capture Technology Meeting

August 13 - 17, 2018

RTI at a Glance

Worldwide Presence and Financial Strength

\$972 M 📶	12 U.S. Offic
FY2017 Revenue	Research Triangle Park, N
	Ann Arbor,
	Atlanta, G
	Berkeley, C
2 9 5 7 🚔 1 1 0 9 🛻	Chicago,
	Fort Collins, C
(fiscal year 2017) (fiscal year 2017)	Portland, C
	Rockville, N
	San Francisco, C
	Seattle, W
	Waltham, M

U.S. Offices	12 () International Offices
riangle Park, NC	Abu Dhabi, United Arab Emirates
Ann Arbor, MI	Barcelona, Spain
Atlanta, GA	Beijing, China
Berkeley, CA	Belfast, Northern Ireland
Chicago, IL	Jakarta, Indonesia
Fort Collins, CO	Kuala Lumpur, Malaysia
Portland, OR	Ljungskile, Sweden
Rockville, MD	Manchester, United Kingdom
an Francisco, CA	Nairobi, Kenya
Seattle, WA	New Delhi, India
Waltham, MA	San Salvador, El Salvador
Washington, DC	Toronto, Canada

ENERGY TECHNOLOGIES

Developing advanced process technologies for energy applications by partnering with industry leaders

Biomass	Industrial Water
Conversion	Treatment
Carbon Capture &	Advanced Materials
Utilization,	for Catalysis &
Gas Separations	Separations
Syngas Processing	Natural Gas

Presentation Overview

- Project Overview and Objectives
- Project Summary and Budget
- Budget Period 1 Review
 - Milestones and Accomplishments
 - NAS Solvent
 - Process Engineering and Design
 - Bench-Scale Testing
- Budget Period 2 Update
 - Overview, Tasks, and Objectives
 - BP2 Progress
- Next Steps

Total Funding: \$4,532,652

Federal: \$3,468,584

Cost Share: \$1,064,068

Objective: Continue the advancement of the NAS CO₂ Capture Process

- Increase solvent performance
- Design and build unique process modifications for Tiller
- Perform pilot testing of NAS on coal-derived flue gas
- Techno-economic and EHS evaluation

Timeframe:

BP	Timeframe	Months	Proposed Budget	Actual Budget
1	10/01/15 – 12/31/2016	15 months	\$1,670,000	\$1,532,330
2	01/01/17 - 09/30/2018	21 months	\$3,000,322	\$3,000,322

BP1 Scope and Objectives

- NAS Process testing at Tiller using propane + coal-derived flue gas
- Reduce the parasitic energy penalty to < 2.0 GJ_t/tonne of CO₂ captured

Other goals and objectives:

- Conduct baseline testing of MEA
- Measure NAS solvent degradation and material compatibility
- Design Regenerator and Absorber wash section
- Improve the physical properties of NAS
- Improve NAS formulations and plan for Scale-up

Bench-Scale Testing of Refined Solvents

6

CO,

BP-1 Baseline Testing of NAS in Tiller Pilot Plant

Objectives:

- Compare MEA and NAS in conventional system
- Water balance
- Confirm reboiler heat duty
- Emission measurement

Results:

- MEA baseline testing completed at Tiller plant
- NAS baseline testing completed
 - 350 hours of testing with propane + 50 hours with coal flue gas
 - Confirmed the reduction in reboiler duty

Design Improvements for NAS-based Process

Design improvements (e.g. interstage coolers, new Regenerator packing section, rich solvent preheater) have been incorporated in the process engineering for a NAS-based CO₂ capture system

BP1 Milestones

Milestone	Description		Completion	Status
А	Kick-off Meeting		12/31/15	<i>Milestone Achieved.</i> Kick-off meeting held at DOE/NETL site on 12/17/2015.
В	Updated project manageme	nt plan	5/5/16	<i>Milestone Achieved.</i> Revision 1 of PMP was approved by DOE/NETL on 6/27/2016.
C	Completion of 250 hours baseline testing at SINTEF Tiller plant		3/20/17	<i>Milestone Achieved.</i> Performed MEA baseline testing at SINTEF and verified 3.6 GJ/tonne-CO ₂ reboiler heat duty consistent with values reported in literature. NAS testing is planned for November 2016.
D	Engineering design package for Regenerator delivered to SINTEF		10/31/16	Milestone Achieved. A final design and engineering package has been delivered and included updated P&IDs, stream tables, and bill of materials for modification recommendations to SINTEF for their CO_2 capture unit at the Tiller plant.
E	Experimental data from formulation improvement confirming that the NAS solvents absorb less than 5 wt% water		12/31/16	<i>Milestone Achieved.</i> Some NAS formulations are able to achieve the < 5 wt% target, however, the optimal formulations have a preferred water absorption target between 5 to 10 wt%.
Success	Criteria Description	Status / BP1 Achievement		Status / BP1 Achievement
Completion of 25 Tiller plant on coa	0 hours baseline testing at al-derived flue gas	<i>Completed.</i> NAS testing in the Tiller plant facility followed SINTEF's testing of the NAS in their lab pilot system. NAS testing was conducted on propane-fired flue gas, and coal-fire boiler. A total of 405 hours of testing was completed.		e Tiller plant facility followed SINTEF's testing of the NAS in sting was conducted on propane-fired flue gas, and coal-fired testing was completed.
Regenerator designation designation agreed upon by p	gn package completed and roject team	Completed. See "Milestone D" description. RTI and SINTEF have agreed on Tiller plant design modifications. These recommended design changes will be implemented in BP2.		

BP-2 Progress and Accomplishments Summary

- Modifications at Tiller led to NAS-optimized absorption process, capturing 90% of CO₂ with the SRD < 2.4 GJ/tonne-CO₂ under realistic process conditions (coal-fired and NG FG)
- Completed Comprehensive parametric testing with 40+ trial conditions
- Completed 1,500+ hours of testing under coal-fired flue gas
- Ongoing Update process simulation based on Tiller data
- Ongoing Update techno-economic assessment with solvent reclaimer
- Completed NAS testing at NCCC

Task	Milestone Description	Planned Completion	Verification
5	F. NAS-specific components installed and commissioned at SINTEF Tiller plant	Completed	Quarterly Report #8
6	G. Completion of 1,200 hours cumulative testing at SINTEF Tiller plant	Completed	Quarterly Report #9
7	H. Detailed techno-economic analysis report delivered to DOE	9/30/18	Quarterly Report #11

Task 7 - Modifications at Tiller

Coal-fired Burner

Additional Water Wash column

Realizing the NAS optimal performance through process modifications:

- Addition of:
 - 1 x regenerator preheater
 - 2 x interstage heaters
 - 2 x interstage cooler
 - 1 x water wash column
- Enlarge lean-rich heat exchanger
- Addition of coal-fired burner
- Timeline:
 - Sizing, Design, and Approval: 01/2017-03/2017
 - Procurement and site prep: 03/2017-07/2017
 - Installation and Shakedown: 08/2017-11/2017
 - Parametric and long-term test: 12/2017-03/2018

Regenerator's Interstage Heaters

Task 8 - Parametric and Long-term Testing of NAS at Tiller

Research Interests:

Scalability

Can the minimal SRD and continuous, waterbalanced operation demonstrated at RTI's BsTU be realized at the system about 10x larger?

Emission

What is the best solution to recover and minimize amine emission? Can the use of built-in water wash be an effective approach?

Degradation

How does the presence of contaminants in coalfired flue gas affect the NAS's performance, emission, and formation of the degraded products?

Long-term Performance

What is the CO₂ capture performance under long-term coal flue gas conditions?

Parametric testing of NAS-5 – Testing Condition

19 steady-state runs performed with varied parameters: Flue gas velocity FG humidity Liquid circulation rate Plant running Heating duty and its distribution Cooling duty and its distribution Coal-fired vs. Natural Gas Water wash operating conditions Acid wash operating conditions 0 48 49 50 51 52 2 3 1 4

Parametric Testing: 751 hours on stream

Week number

٠

٠

٠

Parametric testing of NAS-5 – SRD

Long-term test of NAS-5

543 h on parametric testing and 1,043 h on stream for long-term testing, total of 1,587 h

Parametric and long-term testing of NAS-5 – Corrosion

Low values of metals (Fe,Cr, Ni) <2 mg/l

- Corrosion at Tiller
 - No corrosion issues encountered at Tiller
 - PP liner evaluated at Tiller and result shows good compatibility
- Material Compatibility
 - Excellent compatibility
 - SS316
 - PTFE
 - Good compatibility
 - EPDM
 - Corrosion coupon testing being undertaken at National Carbon Capture Center (NCCC) in June-August
 - Carbon steel
 - SS304
 - PP

Parametric testing of NAS-5 - Degradation

- Ammonia
 - Controlled well by water wash and acid wash
- Methylamine
 - Manual samples taken near the end of the campaign before and after the water and acid washes to evaluate the mitigation approach
- Nitrosamine
 - Larger increase in nitrosamine seen during this campaign compared to the baseline campaign

Table 4.2 Determined alkylamines by LC-MS in Lean NAS solvent samples.

Journal no	RUN No	Time on stream [hrs]	NH₃ [mg/L]	Dimethyl- amine [µg/L]	Diethyl- amine [µg/L]	Methyl- amine [µg/L]	Ethyl- amine [µg/L]	Ethylmethyl- amine [μg/L]	Propyl- amine [µg/L]	Dipropyl- amine [µg/L]
P161252	0	0	109	130	< 100	64300	< 100	< 100	< 100	< 100
P161293	6	24	202	352	111	104114	< 100	< 100	< 100	< 100
P161365	12	124	33	700	165	83577	< 100	< 100	< 100	< 100
P17010	13	151	< 10	324	106	93767	< 100	< 100	< 100	< 100
P17046	17	245	25	208	< 100	81761	< 100	< 100	< 100	< 100

- Risk Mitigation
 - Methylamine
 - Awaiting results of measurements after acid wash
 - Nitrosamine
 - Currently studying nitrosamine destruction using thermal degradation
 - Reclaimer at 150°C of a slipstream of lean solvent at the reboiler outlet can reduce nitrosamine levels
 - HSS reclaimer could be used for this purpose

- HSS formation
 - Low levels of HSS measured in baseline campaign
- Phase separation
 - No issues or indication of phase separation during baseline or modified test campaign
 - A second liquid phase will form when the water content is raised above 16%

HSS Formation vs. Time

Run No.	Time on Stream, hrs	HSS, ppm
0	0	0.25
6	24	0.38
12	124	0.32
13	151	0.32
17	245	0.32
22	381	0.45

NAS Process Testing at NCCC and Cost/Benefit Analysis

- Scheduled for 3 months of testing, starting in late May through August
- Expose NAS with power plant's flue gas
- Further reduce the deployment risk, particularly on fugitive emissions and solvent degradation
- Tested NAS at NCCC using the SSTU
- Test advanced NAS-5 formulation at NCCC to determine:
 - operating windows
 - solvent degradation
 - water balance
 - emissions
 - amine loss
 - other operational issues
- Continuous run of NAS-5 using coal-derived flue gas for at least two months
- Recently completed with 570 hours on stream, data is being analyzed

Next Steps: Project Closeout/Pilot-scale Testing/Emission Mitigation

- Update process simulation with Tiller data to predict emission and waste generation
- Refine TEA with the additional solvent reclaimer unit
- EHS assessment
- Site preparation and solvent manufacturing for TCM testing
- Large pilot testing for non-aqueous solvent technology at Technology Center Mongstad (TCM) under DE-FE0031590
 - Under contract negotiation, project starts in May 2018
 - 10 MW equivalent
 - Range of flue gas compositions (including coal, NGCC, etc.)
 - Extended operation with finalized NAS formulation and process design
- Ongoing discussion with TCM on testing schedule, site preparation, operational experience from BsTU and Tiller

CO₂ Technology Centre Mongstad (TCM), Mongstad, Norway

Next Steps: Project Closeout/Pilot-scale Testing/Emission Mitigation

 Bench-scale testing for Water-Lean Solvent systems (WLSs) at RTI and SINTEF's Tiller under DE-FE0031660

The specific goals of this project are to:

- Characterize and understand the emission produced by water-lean solvent
- Develop a empirically derived emission model based on the solvent physical properties and on critical operating parameters from the absorber and wash section
- Evaluate suitable process arrangement for emission reduction BACT devices
- Demonstrate the effectiveness of these emission mitigation devices on the bench-scale system optimized for water-lean solvent

More Detail: Poster Presentation

Potential emissions control technologies for WLS systems to be incorporated at the CO₂ capture plant

• Financial support provided by DOE NETL under DE-FE0026466

- DOE Project Manager: Steve Mascaro
- RTI cost share and project partner SINTEF

