Discovery of New Materials for Carbon Capture by Computational Screening

Carbon Capture Review Meeting 27 August 2019

- 1. Computational Solvent Screening (Task 5)
- 2. Computational Polymer Screening (Task 12)
- 3. Simulations to Optimize Polymer Blends (Task 12)
- 4. Simulations of MOF-Polymer Interactions (Task 12)

Overall Motivation: We seek to use computational methods to

- provide insight at the atomistic level,
- optimize the properties of existing materials, and
- identify or design new materials for carbon capture.

Computational Solvent Screening

- Previously: screening on NIST DB: 23,000 compounds
- Identified ~25 promising precombustion solvents including CASSH-1
- Motivation: Identify commercially available solvents that will outperform the best pre-combustion solvents currently available.
- Computational screening is efficient and effective.
- PUBCHEM DB: 98,000,000 compounds.

Wei Shi

Poster - Wednesday 5:00 PM

"Computational Efforts to Push the Limits of Current Physical Solvents for Precombustion Carbon Capture Applications"

Computational Solvent Screening

PubChem Web Site

Search results

Items: 1 to 20 of 80582247

<< First <

MW: 961.763 g/mol MF: C₃₂H₅₀N₇O₁₉P₃S IUPAC name: methyl (E)-3-[(1R,3R)-3-[2-[3-[[(2R)-4-[[[Create Date: 2019-07-01 CID: 138453949 Summary Same Parent, Connectivity Mixture/Cor

MW: 957.731 g/mol MF: C₃₂H₄₆N₇O₁₉P₃S⁻⁴ IUPAC name: [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4 Create Date: 2019-07-01

CID: 138453948 Summary Same Parent, Connectivity Mixture/Cor **In-House Web Scraper:**

- Interacts with website, automatically follows appropriate links
- Gleans specific data from PUBCHEM
- Chemical formula, MP, BP, Molecular weight, vapor pressure, viscosity
- Outputs result in database format to generate large solvent database for in-house use
- Written by Abbie Tran (Mickey Leland Energy Fellow, 2019)
- Target specific classes of compounds (functional groups) to search first

Computational Solvent Screening

PubChem Web Site

Search results

Items: 1 to 20 of 80582247

Mixture/Cor

MW: 961.763 g/mol MF: C32H50N7O19P3S IUPAC name: methyl (E)-3-[(1R,3R)-3-[2-[3-[[(2R)-4-[[[Create Date: 2019-07-01 CID: 138453949 Same Parent, Connectivity Mixture/Cor Summary

CID		MP		Density	BP
	138453949		-135.4	1.41	64.1
	409284845		-10.9	0.71	140.9
	856239478		-143.0	0.9734	105.9

In-House Web Scraper:

- Interacts with website, automatically follows appropriate links
- Gleans specific data from PUBCHEM
- Chemical formula, MP, BP, Molecular weight, vapor pressure, viscosity
- Outputs result in database format to generate large solvent database for in-house use
- Written by Abbie Tran (Mickey Leland Energy Fellow, 2019)
- Target specific classes of compounds (functional groups) to search first

Solvent Design: Two Novel Solvents

CASSH-1: (previously identified via screening) good interaction with CO₂,

- moderate number of sites for CO₂ interaction
- successful pre-combustion solvent

• CASSH-1-7: (energetic solvent, designed)

- relatively strong interaction with CO₂,
- fewer sites for CO₂ interaction
- novel "deep clean" solvent

• P-Solvent-8: (entropic solvent, designed)

• good interaction with CO₂,

.S. DEPARTMENT OF

- more sites for favorable interaction with CO₂
- novel pre-combustion solvent

Calculated Results	CO ₂ Loading (mol/MPa•L)	CO ₂ /H ₂ (Ideal) Selectivity
CASSH-1	1.5	60
CASSH-1-7	10	400
P-Solvent-8	4	55

Computational Polymer Screening

Wei Shi

Poster - Wednesday 5:00 PM

"Systematic Atomistic Simulations of CO₂ and N₂ Permeability in Polymers to Develop Better CO₂ Post-Combustion Membrane"

Motivation: Find (or design) polymers with: high permeability, high gas selectivity and good mechanical properties

- Databases:
 - Membrane Society of Australia (MSA) ~1500 entries downloaded, data must be manually checked
 - Chemical Retrieval on the Web (CROW) ~240 entries collected via web scraper
- Properties from DB:
 - Molecular Weight
 - Density
 - Glass transition temperature
 - Solubility parameters

• Properties from Simulations Using In-House Code:

- Gas solubility
- Gas diffusivity
- Gas permeability
- Glass transition temperature
- In-House Database In progress

Polymer Screening: Novel Polymer

- Polyethylene (PE)
- Polydimethyl Siloxane (PDMS)
- Polytrimethyl Silyl-1-Propyne (PTMSP)
- Functionalized PTMSP – Designed

Calculations to Optimize Polymer Blends

- NETL has developed a poly-phosphazene blend that shows good permeability, selectivity and material properties.
- Experiments and simulations used together to optimize the blend
- We are varying the functionality and concentration of phenoxy and ether groups in the side chains to optimize properties:
 - Minimize phase separation
 - Optimize the mechanical properties (durable, elastic, non-sticky)
 - Maximize permeability, selectivity

- Blend A: PIM-1 + MEEP0 (100% phenoxy side chains)
- Blend B: PIM-1 + MEEP80 (80% ether side chains)
- Blend C: PIM-1 + MEEP100 (100% ether side chains)

Simulation Details

Temperature – 313 K

Pressure – 0.05 to 1bar

Polymer Generation – Materials Studio¹

Absorption properties – Monte Carlo (CASSANDRA³)

Structural and Diffusion properties – Molecular Dynamics (LAMMPS²)

Forcefield – CVFF⁴ (Consistent Valence Force Field)

Samir Budhathoki

Ali Sekizkardes

Local Density Blend A (PIM-1/MEEP-0)

- Notable phase separation
- Very little intercalation
- Gas permeation properties not obtained: film not well blended enough

Local Density Blend B (PIM-1/MEEP-80)

• Blends to form a good membrane

- Optimized blending
- Permeability better
- Insight: smaller ether groups intercalate
- Predictive tool, can be used to test other variations in the polymers

Experimental Results: Mixed gas at 25C						
	CO ₂ Permeability (Barrer)	CO ₂ /N ₂ Ideal Selectivity				
PIM-1	8000	17				
PIM-1/ MEEPO	film is not testable: phase separation					
PIM-1/ MEEP80	3200	24				
PIM-1/ MEEP100	5300	24				

Computational Screening for Mixed Matrix Membranes

Computational Study Goals:

- Use large screening to determine which MOFs to pair with which polymer.
- Provide insight into the relationship between MOF and MMM properties.
- Connect atomistic calculations with process simulations.

Over 1 million membranes

Christopher E. Wilmer University of Pittsburgh

MMMs based on PIM-1/MEEP Blend

- Best MMM in this set:
 - Predicted CCC Reduction from \$62.9 to \$42.7 per tonne CO₂
 - This MOF has CO₂/H₂O
 Sorption Selectivity of 6.7
- The MOFs in this data set are all CO₂/H₂O sorption selective
- Tool for selecting MOFs to pair with polymers

Experimentally Tested MMMs

U.S. DEPARTMENT OF

MOF-Polymer Interactions

- Density Functional Theory (DFT)
- Calculate MOF-polymer interactions
- Charge Density Difference:
 - Yellow: charge increase
 - Blue: charge decrease
- Molecule: functional group (ethoxy) in poly-phosphazene side chains
- Modeling allows us to choose MOFs that interact strongly with polymer, prevent MOF aggregation

I.S. DEPARTMENT OF

MOF2-MEE: -45 kcal/mol MOF1-MEE: -16 kcal/mol

- Computational Solvent Screening → Creating New Larger Database, Two Novel Solvents Designed
- Simulations to Optimize Polymer Blends → Simulations and Experiment to Optimize Blends; Predictive Tool
- Simulations of MOF-Polymer Interactions → Computational Tools for pairing MOFs with Polymers for Optimal MMMs

Acknowledgments

Samir Budhathoki Olukayode Ajayi Christopher E. Wilmer Paul Boone Anne Ruckman Surendar Venna Patrick Muldoon Joshua S. McNally Nat Rosi

Ali Sekizkardes

Victor Kusuma

Sameh Elsaidi

Miguel Zamarripa-Perez David Hopkinson Lynn Brickett John Litynski Tim Fout

Anastasia Piacentini (Cover Art)

Energy & Environmental Science

ISSN 1754-5706

Janice A. Steckel, Christopher E. Wilmer et al. High-throughput computational prediction of the cost of carbon capture using mixed matrix membranes

