Pre-Project Planning for a Flameless Pressurized Oxy-combustion (FPO) Pilot Plant

DOE National Energy Technology Laboratory
Project Number: DE-FE0027771
8/14/2018

Principal Investigator:
Joshua Schmitt

Project Team: SwRI, ITEA, EPRI, GE Global Research, Jacobs, PRA
Overview

• Project Summary
• Project Team
• Technology Premise and Background
• Project Goals
• Project Developments and Progress
Project Summary

• Part of DOE goal for advancing Transformational Coal Technologies

• Planning of a demonstration facility
 – Cycle analysis
 – Site Selection
 – Layout
 – Pre-FEED cost estimate

• Develop economic analysis and technology maturation pathway to commercialization
Project Team

Principal Investigator

Southwest Research Institute

Large Scope
- Itea
- Jacobs Engineering

Small Scope
- Electric Power Research Institute
 - GE Global Research
- Peter Reineck Associates
FPO Combustion

• Pressurized atmosphere of water and CO₂ under “volume expanded combustion” avoids traditional flame fronts
 – FPO combustion is more locally controllable with more uniform temperatures
 – Pressurized firing also improves cycle efficiency

• Conversion of carbon to CO₂ is over 99%
 – Almost zero carbon content in incombustible products
 – Traditional: flying and falling ash particles
 – FPO: slag with near-zero carbon content and tiny particulate

Traditional Combustion with Flame Front

Flameless Pressurized Combustion

Traditional Combustor Products: Particulate

FPO Combustor Products: Near-zero carbon, neutral slag
FPO Cycle

- Slurry of milled coal and water combusted under pressure
- Hot combustor gas is quenched through mixing
- Enters Once-Through Steam Generator (OTSG)
- A large percentage of combustion products are recycled
 - Some recycled flow used for quenching before OTSG
 - The remainder of recycled flow is mixed with pressurized oxygen and injected into the combustor
- New iteration of cycle splits before boiler and includes turbo-expander
Project Tasks and Goals

• Choose a location to host the pilot facility
 – Should already have coal receiving and handling infrastructure available
 – Must meet local regulatory requirements
• Design and layout a 50 MWth pilot facility
 – Includes engineering of coal slurrying, combustion loop, turbo-expander, and once-through steam generator
 – Generate cost estimates
• Create a testing program that addresses knowledge gaps and advances FPO technology readiness level
• Prove that FPO development path can meet DOE cost and emissions targets for transformational coal technologies with techno-economic assessment
Site Selection Progress

• Weighted criteria selection process
 – Availability of funding
 – Availability of staffing
 – Permitting process

• Narrowed down to a primary and secondary site
 – Primary: University of Wyoming Central Energy Plant (UW CEP)
 – Secondary: National Carbon Capture Center (NCCC)

• Focus shifted to layout and cost of pilot
UW CEP Proposed Site
UW CEP Permit Plan

• Provided documentation from UW
• Local Permits and Ordinances
 – State and local review
• Sound Issues
 – Need identified to keep below a threshold “hospital-grade acoustical design”
• Air Quality and Emissions
 – Possibly tied in with UW CEP existing Title V permit
 – Possibility of waiver
• Water Permits
 – No requirement for zero liquid discharge
 – Polish plant water products for reuse to minimize usage and cost
• NEPA Study
 – Goal of a Categorical Exclusion or Environmental Assessment with a Finding of no Significant Impact
PFD Development

- PFD for identification of major components and streams
 - Establishing a naming and tagging convention
 - Showing system interconnection/balance of plant
 - Identifying key streams and figures of merit
 - Showing scope breaks for project management
 - Showing material selection for components and streams
Component Specification

- Based on the “super-compliance” PRB coal published by NETL
- Heat and mass balance in Aspen Plus
- Combustion gas characterization from ITEA testing and custom codes
- Specification of major components
 - Combustor
 - OTSG
 - Turbo-expander
 - Water pumps
 - Economizers
 - Feedwater heaters
 - Water vapor condenser
 - Flue-gas desulfurization (FGD) scrubber

<table>
<thead>
<tr>
<th>Coal name</th>
<th>PRB Wyodak/Anderson Rochelle Coal Co. Subbituminous C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Coal seam nomenclature</th>
<th>Mine</th>
<th>ASTM D388 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proximate Analysis³</th>
<th>As-Received</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>27.42%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Volatile Matter</td>
<td>31.65%</td>
<td>43.61%</td>
</tr>
<tr>
<td>Ash</td>
<td>4.50%</td>
<td>6.20%</td>
</tr>
<tr>
<td>Fixed Carbon</td>
<td>38.43%</td>
<td>50.19%</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate Analysis³</th>
<th>As-Received</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>50.23%</td>
<td>69.21%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3.41%</td>
<td>4.70%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.65%</td>
<td>0.89%</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.22%</td>
<td>0.30%</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.02%</td>
<td>0.03%</td>
</tr>
<tr>
<td>Ash</td>
<td>4.50%</td>
<td>6.20%</td>
</tr>
<tr>
<td>Moisture</td>
<td>27.42%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>13.55%</td>
<td>18.67%</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heating Value²,⁵</th>
<th>As-Received (Reported)</th>
<th>Dry (Dulong calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHV (Btu/lb)</td>
<td>8,800</td>
<td>11,546</td>
</tr>
<tr>
<td>LHV (Btu/lb)</td>
<td>8,498</td>
<td>11,113</td>
</tr>
<tr>
<td>HHV (kJ/kg)</td>
<td>20,489</td>
<td>28,856</td>
</tr>
<tr>
<td>LHV (kJ/kg)</td>
<td>18,738</td>
<td>28,860</td>
</tr>
</tbody>
</table>
Combustor Design

- **Vertical design**
 - Evolution from the horizontal combustor in the 5 MWth pilot
 - Close to design of ITEA 15MWth commercial plant
 - Refractory lined

- **Expanded volume cone**
 - Gas and slurry injected at top
 - Temperature and velocity tuned with CFD
 - Cone reaches to the bottom of the combustor before traveling back up the sides to the exit

- Flue gas quenching occurs at exit
Once-Through Steam Generator (OTSG)

- Banks of finned tubes contained in a pressure vessel
 - Square duct supported and inserted into a circular pressure vessel
 - Between duct and pressure vessel is pressurized with cooler gas from the recycle blower
- Modular tube bank design can include multiple reheat
 - Banks can be assembled in different orders that optimize gas temperature profile
 - Fast startup and shutdown improves flexibility
- Size can improve ease of manufacturing and cost
 - Design of each OTSG could be kept small enough for off-site fabrication and transport
 - Multiple OTSG units may be needed, depending on plant scale
FPO 50 MW Loop Layout

- ITEA design
- Batching of quenched slag at bottom of elevated combustor
- OTSG horizontal for minimal support
- Refractory lining for combustor/pipe sections at 1380°C
- Footprint for layout in overall facility
Preliminary Test Plan

• Test plan being developed to target areas of risk and advance TRL of FPO
• Includes multiple phases of testing that mitigate risk
 – Subscale slurrying and firing trials
 – Cold commissioning of the 50MWth plant
 – Hot commissioning and shakedown
 – Steady-state, flexibility, and dynamic load testing
 – Inspection outages
 – Performance testing on-design
 – Off-design condition testing
ITEA study with ENEL showed that cost greatly increases above 500MWth boiler.

To achieve 500MWe output, modular approach needed.

FPO loops would include combustor, OTSG, turbo-expander.

All other elements would be consolidated into single packages:
- Steam power
- Flue gas treatment
- Heat recovery package
- Carbon capture
Thank You