Southeast Offshore Storage Resource Assessment (SOSRA) Project Number: DE-FE0026086

Patti Berry | Southern States Energy Board **Nino Ripepi | Virginia Tech** Jim Knappe | University of South Carolina Jack Pashin & Jenny Meng | Oklahoma State University

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Southeast Offshore Storage Resource Assessment (SOSRA)

Organization Chart

Advisory Committee:

state geological surveys, universities, state oil and gas boards, oil and gas companies, and utilities (no contract, no decision making authority)

Project Overview

Goals and Objectives

Goal

Provide a high quality prospective carbon dioxide (CO_2) storage resource assessment of the eastern Gulf of Mexico and the Mid- and South Atlantic seaboard.

Objectives

Phase I /Budget Period 1 (BP1)

• **Objective 1:** Provide an overview of the basic geologic framework of the SOSRA region, identify potential storage units, and define the key planning areas. [Goal 3]

Phase II /Budget Period 2 (BP2)

- **Objective 2:** Provide a robust characterization of offshore CO₂ storage opportunities, as well as conduct a volumetric analysis that is consistent with established procedures employed by the National Energy Technology Laboratory (NETL) for CO₂ assessment. [Goal 3]
- **Objective 3:** Provide limited modeling of offshore CO₂ storage to identify well and reservoir configurations that are capable of meeting the goal of 30 megatonnes or greater storage in key focus areas. [Goal 3]
- **Objective 4:** Development of Best Practices Manuals (BPMs) based upon this research to advance the state of knowledge by identifying paths to deployment and applicable technologies that improve the effectiveness while reducing the cost of storage operations. [Goal 4]

Timeline

Mid and South Atlantic Study Area and Data Coverage

- > 200,000 line km 2-D seismic reflection data
- 6 exploration wells plus COST-GE well
- ODP / DSDP / IODP scientific drilling
- Seismic refraction data

Technical Status in Mid-Atlantic:

- Seismic Interpretation
- Reservoir Identification
- Mapping (Isopachs)
- Preliminary Resource Assessment
- Reservoir Simulation
 - Sensitivity Analysis
 - Variation in Well Pattern
 - Evaluation of Stacked
 Reservoirs and Single Zone

Seismic Interpretation and Reservoir Characterization Workflow

- Focus on the Continental Shelf of Virginia and North Carolina
- 300 Seismic Profiles Interpreted from (12 Surveys)
- COST-B2 and COST B-3 Used for Seismic Well Ties and Reservoir Parameters
- 11 Sequence Boundaries Regionally Mapped (Sea Floor to Upper Jurassic)
- Fault Zones Regionally Mapped
- Seismic Facies/Lithologies Association and Extrapolation (From COST B-2 and B-3)
- Stacking Velocities (.geo files) Used to Calculate Interval Velocities (DIX Conversion)
- Depth Conversion
- Attribution of Reservoir and Seal Properties to Depth Converted Model (N/G, Porosity, Permeability...)

Dip Line A 125 Survey E-01-75

Original Profile

82 km

12 Geological Units Identified Based on Sequence Stratigraphy and Well Data

COST B2 Seismic Facies Lithology Association

FACIES #	TOP	AGE	SEISMIC FACIES		LITHOLOGY	MIX
				% SS	%SH	%LS (CEMEN
1.	300	н	High Amp, Continuous Horiz, Low Freq	95	5	
2.	670	PLEIST	High Amp, Semi-Continuous Horiz, High Freq	90	10	
3. A.	1009	PL	Horiz. Low Amp Semi-Cont Horiz->	76	24	
в.	1350		Semi-Cont. Med-High Amp. Sigmoidal ->	61	39	
C.	2600		Horiz, High Amp Cont	41	59	
4.	2850	MIO	High Amp Semi-Cont Horizo	40	59	1
5. A.	3140	OLIG	High Amp Cont Horizo to	35	62	3
в.			Low Amp SemiCont	13	85	2
б. А.	4083	EOC	High Amp Cont Horiz to	13	85	2
в.			Low Amp SemiCont	52	47	2
7. A.	5161	MS/CM/SN/ CN	High Amp Cont Horiz to	51	47	2
в.			Low Amp SemiCont Truncated at top	?		
8. A.	5930	TUR	Horiz. Low Amp Semi-Cont Horiz->	56	43	1
в.	6500	CEN	Semi-Cont. Med-High Amp. Shingled ->	54	44	2
C.	7300		Horiz, High Amp Cont	?		
9. A.	8223	ALB	High Amp Cont to	28	62	10
в.			Low Amp SemiCont Horiz, Onlapping	?		
10. A.	8700	APT	High Amp Subparallel SemiCont Horiz to	44	41	15
в.			Gentle Concave Upaward	?		
11. A.	10093	BAR/HAU/V AL	Med Amp Subparallel SemiCont Horiz to	35	48	17
В.			Gentle Concave Upward	?		
12. A.	11680	TITH/KIM	Low Amp Discontin Subhoriz to	24	64	12
в.			High Amp Contin Subhoriz	?		

% of Sand

Lower Cretaceous Reservoirs in NC

Albian				Barremian				Hauterivian						
COS	T B-2	COST B-3		COST B-2		COST B-3		Average	COST B-2		COST B-3		Average	
Net/Gross	Core Porosity	Net/Gross	Core Porosity	Thickness	Net/Gross	Core Porosity	Net/Gross	Core Porosity	Thickness	Net/Gross	Core Porosity	Net/Gross	Core Porosity	Thickness
0.71	0.30	0.46	0.27	306 meters	0.74	0.26	0.51	0.17	215 meters	0.66	0.25	0.51	0.233	94 meters

Lower Cretaceous Reservoirs In VA

Albian								
COS	T B-2	COS	Т В-3	Average Thickness				
Net/Gross	Core Porosity	Net/Gross	Core Porosity					
0.71	0.31	0.46	0.28	371.6 meters				

Barremian											
COS	ST B-2	COS	A								
Net/Gross	Core Porosity	Net/Gross	Core Porosity	Thickness							
0.74	0.27	0.51	0.18	364.6 meters							

Hauterivian									
COS	T B-2	COS	T B-3	Average					
Net/Gross	Core Porosity	Net/Gross	Core Porosity	Thickness					
0.66	0.25	0.51	0.23	451.8 meters					

Preliminary CO2 Storage Potential of the Lower Cretaceous Reservoirs in N.C

- DOE- Methodology Followed to Estimate Geological Storage in Saline Formations
- Results Displayed for 2 Scenarios: High CO2 Storage Efficiency Factor (5%), Low CO2 Storage Efficiency Factor (0.4%) (10th to 90th % probability range)
- CO2 Storage Potential Ranges Between 8 and 114 Gigatons of CO2 in N.C
- CO2 Storage Potential Ranges Between 7 and 91 Gigatons of CO2 in VA

Lower	Rese	rvoir			Area in	Density	E fo	r clastic	s rocks	Volume	e in GT
Cretaceous Reservoirs	Thickne	ss in m	Average P	orosity	m2	in kg/m3	B P10	0	P90	P10	P90
Albian/Aptian	179	179.0		0.3		700	0.00)4	0.05	5.0	63.0
Barremian	134	134.4			3.44E+10	700	0.00	0.004 0.05		2.3	35.6
Hauterian	55.0		0.2		3.44E+10	700	0.00	4 0.05		1.2	16.0
								Т	otal Volume	8.5	114.6
Lower	Average	A	Reservoir	A			D	E for c	lastics rocks	Volum	e in GT
Cretaceous Reservoirs	Thickness in m	N/G	Thickness in m	Porosi	le Area ty	in m2	in kg/m3	P10	P90	P10	P90
Albian/Aptian	371.6	0.585	217.4	0.3	1.47	'E+10	700	0.004	0.05	2.61	32.60
Barremian	364.59	0.625	227.9	0.2	1.47	'E+10	700	0.004	0.05	2.06	25.74
Hauterian	451.85	0.585	264.3	0.2	1.47	'E+10	700	0.004	0.05	2.62	32.78

Target Reservoirs – Limited Well Control (Amato, 1978)

Regional Structure – Upper Cretaceous and Upper Jurassic

- Mapped across entire dataset
- Depth converted from well velocities
- Largely controlled by regional dip

Top Upper Jurassic

Upper Cretaceous – Storage Assessment

cademic Star

Modern Environmental Science and Engineering (ISSN 2333-2581) August 2017, Volume 3, No. 8, pp. 532-552 Doi: 10.15341/mese(2333-2581)/08.03.2017/004 Academic Star Publishing Company, 2017 www.academicstar.us

Assessment of Upper Cretaceous Strata for Offshore

CO₂ Storage, Southeastern United States

Khaled F. Almutairi, Camelia C. Knapp, James H. Knapp, and Darrell A. Terry School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, SC 29208, USA

- Capacity assessment of Upper Cretaceous section
- 9 Gt in SE Georgia Embayment
 32 Gt regionally

Mid and South Atlantic Conclusions

- Variable Data Quality (Fair to Poor) due to different Seismic Acquisition and Processing Vintages
- Sparse Borehole Control
- Interpretation allows for only Basic Reservoir Quality Data Similar limitation for Seal Quality Data
- Uncertainty could be greatly reduced in particular locations with 3D Seismic Data Acquisition and Exploration Wells
- Reservoir: Early Cretaceous Sandstones
- Seals: Shales with a density lower than 2.1g/cm3
- Reservoir Simulation
 - Sensitivity Analysis
 - Test of Different Field Design: Injection Wells Number and Location
 - Estimation of Time Needed to Reach Goal of 30 Megatons of CO2 Stored
 - Single-zone Storage and Stacked Reservoirs Investigated

EGOM Study Area and Subregions

Regional Structure—DeSoto Canyon Salt Basin to Tampa Embayment

Depth-Converted Structural Cross Sections, DeSoto Canyon Salt Basin

Prospective EGOM Sinks

P₅₀ Storage Resource—DeSoto Canyon Salt Basin

Paluxy Formation

Tuscaloosa Group

Categories	Paluxy	Washita-Fredericksburg	Lower Tuscaloosa	
Reservoir Capacity at 100% CO_2 Saturation (Gt)	122.4	7.5	69.7	
Efficiency Factor (P ₁₀) %	7.40	7.40	7.40	
Efficiency Factor (P ₅₀) %	14.00	14.00	14.00	
Efficiency Factor (P90) %	24.00	24.00	24.00	
Reservoir CO_2 Storage Resource (P_{10}) (Gt)	9.06	0.56	5.16	
Reservoir CO ₂ Storage Resource (P ₅₀) (Gt)	17.13	1.06	9.76	
Reservoir CO_2 Storage Resource (P ₉₀) (Gt)	29.37	1.81	16.73	

Efficiency factors based on displacement terms for sandstone

Qualified sandstone: Thickness > 6 m Porosity > 15%

Individual offshore blocks capable of storing as much as 69 $Mt CO_2$.

Accomplishments to Date

- All basic data compiled and loaded into Petra, Petrel, and Kingdom 2D/3D Pak.
- Seismic data depth converted and interpreted.
- Stratigraphic and structural interpretations complete.
- Subsurface mapping completed (Structure, isochore, isolith, porosity, etc.)
- Porosity calculated for candidate storage reservoirs using geophysical logs.
- Preliminary storage resource maps developed for regions with well control.
- Results presented at broad range of meetings (technical conferences, RECS, etc.)

Lessons Learned

- Seismic control delineates geologic framework, but constraining reservoir properties, volumetrics uncertain in areas with limited well control.
- Lack of permeability data in target sinks.
- Geomechanical analysis based on reservoir stresses required to assess reservoir and seal integrity.

Synergy Opportunities

- Opportunities for collaboration with other offshore project teams in US and abroad.
- Draw on experience from offshore injection (CO_2 storage, EOR, waterflood, etc).
- Compare and contrast onshore and offshore reservoir and seal characteristics, operational logistics.
- Collaborate with onshore and offshore teams to develop predictive frameworks that address data gaps.

Project Summary

- Geologic framework highly variable within and among study regions (salt basins, stable passive shelves, carbonateevaporite platforms).
- Diverse portfolio of prospective CO₂ storage objectives, reservoir seals.
- Preliminary CO₂ storage resource maps indicate large storage capacity in sandstone and carbonate.
- Prospective offshore blocks (9 mi²) appear capable of storing multiple years of emissions from coal-fired power plants.
- Next Step is continued assessment and finalization of reservoir volumetrics.

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Bibliography

Publications

- Meng, Jingyao, Pashin, J. C., Nygaard, Runar, and Chandra, Avinash, in review, Analysis of the stress field in the DeSoto Canyon Salt Basin for ensuring safe offshore carbon storage: International Journal of Greenhouse Gas Control.
- Pashin, J. C., Chandra, Avinash, Charbonneau, Paul, Meng, Jingyao, Hills, D. J., and Redden, M. R., 2017, Offshore CO₂ storage potential of the eastern Gulf of Mexico: Houston, American Institute of Chemical Engineers: Carbon Management Technology Conference Proceedings, contribution P489770, 20 p.
- Pashin, J. C., Guohai Jin, and Hills, D. J., 2016, Mesozoic petroleum systems and structure in the Mobile, Pensacola, Destin Dome, and Viosca Knoll Areas of the MAFLA Shelf, in Lowery, C., Snedden, J. W., and Blum, M. D., eds., Mesozoic of the Gulf Rim and Beyond: New Progress in Science and Exploration of the Gulf of Mexico Basin: GCSSEPM Perkins-Rosen Special Publication, p. 416-449.

Abstracts

- Hills, D. J., Koster, J., and Pashin, J. C., 2018, Seismic reflection data interpretation to support project ECO2S, Kemper County, MS: American Association of Petroleum Geologists Annual Convention and Exposition Program, unpaginated CD-ROM.
- Meng, Jingyao, Pashin, J. C., and Chandra, Avinash, 2018, Geomechanical characteristics of the DeSoto Canyon Salt Basin, eastern Gulf of Mexico: American Association of Petroleum Geologists Annual Convention and Exposition Program, unpaginated CD-ROM.
- Pashin, J. C., Achang, M., Chandra, A., Folaranmi, A., T., Martin, S., Meng Jingyao, Wethington, C., Urban, S., Riestenberg, D., Koperna, G., Redden-McIntyre, M. R., Hills, D. H., and Esposito, R. A., 2018, The Paluxy Formation in the east-central Gulf of Mexico Basin: Geology of an ultra-giant anthropogenic CO2 sink: American Association of Petroleum Geologists Annual Convention and Exposition Program, unpaginated CD-ROM.
- Meng Jingyao, Pashin, J. C., and Chandra, A., 2017, In-situ stress in the DeSoto Canyon Salt Basin, Eastern Gulf of Mexico: Geological Society of America Abstracts with Programs, v. 49, no. 6, doi: 10.1130/abs/2017AM-297935.
- Pashin, J. C., Hills, D. J., Chandra, Avinash*, Charboneau, Paul*, Guohai Jin*, McIntyre-Redden, M. R.*, and Meng Jingyao*, 2017, Offshore CO2 storage potential of the MAFLA continental shelf, eastern Gulf of Mexico: Houston, Texas, American Institute of Chemical Engineers, Carbon Management Technology Conference Program, p. 40-41.
- Pashin, J. C., Guohai Jin*, Hills, D. J., and Meng Jinyao, 2017, Jurassic Gravitational Shelf Spreading in the western DeSoto Canyon Salt Basin, Mobile, Viosca Knoll and Destin Dome Areas, East-Central Gulf of Mexico: American Association of Petroleum Geologists Annual Convention and Exhibition Program, unpaginated CD-ROM.
- Pashin, J. C., Hills, D. J., Chandra, Avinash*, Charboneau, Paul*, Guohai Jin*, McIntyre-Redden, M. R.*, and Meng Jingyao*, 2017, CO2 storage potential of the MAFLA shelf, eastern Gulf
 of Mexico: Beaumont, Texas, Texas Bureau of Economic Geology, 2nd International Workshop on Offshore CO2 Storage Proceedings, unpaginated.
- Hills, D. J., Pashin, J. C., and Redden, M. R.*, 2016, Investigating the eastern Gulf of Mexico for potential geologic storage of CO2: Geological Society of America Abstracts with Programs, v. 48, no. 7, doi: 10.1130/abs/2016AM-280642.
- Hills, D. J., Pashin, J. C., and Redden, M. R.*, 2016, Southeast Offshore Storage Resource Assessment: Opportunities in the eastern Gulf of Mexico for CO2 storage: American Association
 of Petroleum Geologists Annual Convention and Exhibition Program, unpaginated CD-ROM.
- Pashin, J. C., Guohai Jin*, Hills, D. J., and Meng Jingyao*, 2016, Evolution of giant salt pillows in the Destin Dome Area, eastern Gulf of Mexico: Implications for petroleum exploration and geologic CO2 storage: Geological Society of America Abstracts with Programs, v. 48, no. 7, doi: 10.1130/abs/2016AM-283732.

Benefit to the Program: Supporting Carbon Storage Program Goals

- Goal 3: "Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent."
 - Conduct a prospective storage resource assessment for offshore regions of the Eastern Gulf of Mexico, Straits of Florida, Mid-Atlantic, and South Atlantic.
- **Goal 4**: "Develop Best Practice Manuals for monitoring, verification, accounting (MVA), and assessment; site screening, selection, and initial characterization; public outreach; well management activities; and risk analysis and simulation."
 - Produce information and develop recommendations that will be useful for inclusion in the DOE Best Practices Manuals (BPMs).
- **Overall Objective**: "Develop and advance technologies that will significantly improve the effectiveness and reduce the cost of implementing carbon storage, both onshore and offshore, and be ready for widespread commercial deployment in the 2025–2035 timeframe."
 - Identify target development areas based on physical and regulatory considerations and computational simulations for CO₂ injection and enhanced recovery.
 - Develop outreach program and reporting related to shared data (NatCarb database and Atlas) and commercial deployment of offshore carbon storage operations.