2019 NETL CO₂ Capture Technology Project Review Meeting *August 28, 2019*

Amine-Appended Metal-Organic Frameworks as Switch-Like Adsorbents for Energy-Efficient Carbon Capture

Jeffrey B. Neaton, Jeffrey R. Long, and Maciej Haranczyk

Lawrence Berkeley National Laboratory

Project Overview

Funding

 Total project funding o DoE share: \$7.4M o Cost share: \$755k

Overall Project Performance Dates

- Project start date: 8/1/2017
- **Industrial partners start date:** 8/1/2018
- Project end date: 7/31/2021

<u>irrrrr</u>

Project Participants

- PI: Jeffrey Neaton (LBNL)
- Co-PI: Jeffrey Long (LBNL)

inventy

- Co-PI: Maciej Haranczyk (LBNL)
- Mosaic Materials (MOF production)
- Inventys (System development)
- Electricore (System development)
- CCSI2 (Process modeling unfunded)

Overall Project Objectives

Development of a transformational technology based upon a diamineappended MOF for post-combustion $CO₂$ capture at a coal power plant

Technology Background: MOFs for CO₂ Capture

MOF channels have a diameter of 18 Å and are lined with open Mg^{2+} sites

mosai

Dangling amines coat periphery of the channel leaving space for rapid $CO₂$ diffusion

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

Technology Background: MOFs for CO₂ Capture

- MOF channels have a diameter of 18 Å and are lined with open Mg^{2+} sites
- Dangling amines coat periphery of the channel leaving space for rapid $CO₂$ diffusion

McDonald, Lee, Mason, Wiers, Hong, Long *J. Am. Chem. Soc.* **2012**, *134*, 7056

Step-Shaped Isotherms via Cooperative CO₂ Binding

- Very little hysteresis upon desorption of $CO₂$
- Step shifts rapidly to higher pressure with increasing temperature

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocellà, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell, Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long Nature 2015, 519, 303

moso

materials

inventys

mmi

 CSI^2

Step-Shaped Isotherms via Cooperative CO₂ Binding

McDonald, Mason, Kong, Bloch, Gygi, Dani, Crocellà, Giordano, Odoh, Drisdell, Vlaisavljevich, Dzubak, Poloni, Schnell, Planas, Lee, Pascal, Prendergast, Neaton, Smit, Kortright, Gagliardi, Bordiga, Reimer, Long *Nature* **2015**, *519*, 303

materials

Manipulating the Adsorption Step Position

Advantages

- High tunability of amine-appended framework materials
- Large working capacity due to stepped $CO₂$ adsorption
- High $CO₂$ selectivity over N₂, O₂, and H₂O
- **Molecular level characterization is possible**

Challenges

- Large scale and economical production of materials
- Durability and chemical stability is unknown
- Reduction of regeneration cost (temperature swing)

Objective: Implement Adsorbents in RTSA Process

THREE SIMPLE STEPS

Technical Approach and Project Scope

LBNL: Materials discovery, synthesis & characterization

Computational prediction of materials

- Synthesis of amine-appended MOFs (Gen1−Gen3)
- Preliminary stability testing
	- Optimize scalable diamine-appended MOF production process

Mosaic: Materials production & scale-up R&D Inventys:

materials

Implementation & assessment in real flue gas capture processes

- Interface between LBNL and Inventys for process improvements
- Deliver kg-scale batches of material for preliminary testing and demo at NCCC
- Formation of structured adsorbent beds
- Process development and testing: $powders \rightarrow VTS \rightarrow PDU \rightarrow RPV-RAM$
- Process modeling and validation

Goal: Development of transformative carbon capture technologies by the cooperative insertion of $CO₂$ in amine-appended frameworks

inventys

13

CSI

Project Schedule & Key Milestones (Year 2)

mosaic

NATIONAL LABORATORY

 $\overline{}$

Project Schedule & Key Milestones (Year 2)

mosaic

Year 1 Recap: Gen1 Material Identified

- 2.4 mmol/g (9.1 wt %) working capacity with only a 60 °C temperature swing
- Approximate regeneration energy: 2.4 MJ/kg $CO₂$

materials

JATIONAL

HNOLOGY

<u>aan a</u>

Milner, Siegelman, Forse, Gonzalez, Runčevski, Martell, Reimer, Long *J. Am. Chem. Soc.* **2017**, *139*, 13541

Year 2: Large Scale Synthesis of Gen1 Material

Objectives

- Research gram to kilogram scale-up method
- Produce MOF at the gram to kilogram scale for use by Inventys
- **I dentify improvements at kilogram scale**

Scale-up involves four distinct steps

MOF synthesis

Batch reaction of metal salt and organic ligand in solvent

• MOF purification

Product is washed and dried to remove impurities and excess solvents

inventys

Amination

Purified MOF product is impregnated with amines

■ Activation

Solvent is removed

Steps are dependent on each other, and changes to one procedure often effects the others

Increasing Scales of Synthesis Equipment

LBNL Gen1 synthesis

150 mL reaction

1.5 L reaction

10 L reaction

Scale-Up Research & Optimization

- Stage 1: Standardized synthesis of 150 mL reaction volume \rightarrow success All QC metrics met: PXRD after synthesis, $N₂$ surface area after purification, $CO₂$ capacity (TGA) after amination, amine content (NMR) after activation
- Stage 2: Scale-up to 1.5 L (100 g theoretical yield) \rightarrow success All QC metrics met: PXRD after synthesis, N_2 surface area after purification, $CO₂$ capacity (TGA) after amination, amine content (NMR) after activation
- Stage 3A: Scale-up MOF to 10 L scale \rightarrow success All QC metrics met: PXRD after synthesis, $N₂$ surface area
- Stage 3B: Amination and purification combined at 10 L scale \rightarrow fail Amine content and $CO₂$ adsorption capacity standards not met Separating these steps at 10 L scale \rightarrow success

Modified Purification and Amination Procedure

New procedure separates purification and amination \rightarrow successful procedure with all quality control metrics met

materials

inventys

<u>irrrrr</u>

 CSI

Gen1 MOF Laminate Formulation

of pulverization of the rod-shaped crystals and/or binder addition XRD and SEM morphology demonstrate equivalent structure between the powder and laminate. Added morphology found at the laminate surface could be the result

materials

inventys

21

Gen1 Preliminary VTS Bed Produced

inventys

Stacked laminates (Xsection)

CCSI

Gen1 MOF VTS Bed Formulation

inventys

- Using a new coating technique, Inventys was able to produce enough laminate to build a VTS bed
	- Water based solvent with added diamine was used
		- CO₂ capacity at 50 °C, 15% CO₂ for the laminate >41 cc/g_{MOF} (1.84 mmol/g); working capacity > 34.5 cc/ g_{MOF} (1.55 mmol/g) for 50 °C/90 °C swing
		- Coating density is 30% of the desired capacity \rightarrow laminate formulation at full MOF coating density in progress, streamlining material processing between Mosaic and Inventys

- Preliminary VTS bed is a very important milestone which permits testing the full performance of the Gen1 material to rapid-cycling TSA with standard flue-gas concentration and moisture
	- Preliminary kinetics and cycle parameters can be determined
	- \blacksquare Both hot $CO₂$ and steam will be tested as regeneration gas

Year 2 R&D: SO₂ Stability and Regeneration

BERKELEY LAB

- Capacity of 1 SO₂ per diamine obtained from both elemental analysis and SO₂ breakthrough data
- $CO₂$ capacity does not continually degrade with increased $SO₂$ exposure time

Understanding SO₂ Adsorption in Gen1 Material

inventys

- Solid-state NMR and DFT calculations suggest formation of ammonium sulfites
- Mass spectrometry data also indicates the presence of sulfites

materials

<u>rrrrr</u>

Characterization of SO₂ Adsorption in Gen1 Material

Mechanism of degradation

 Diamine loading shows that diamines are lost during re-activation instead of during exposure

inventy

Attempts at regeneration

- Ethanol soak, room temperature: removed diamines
- Acetonitrile soak, room temperature: no change
- Acetonitrile soak, 60 °C: removed diamines
- Flowing humid N₂, 4 h at 55 °C: no change
- Flowing humid $CO₂$, 4 h at 50 °C: no change

BERKELEY LAB

Year 2 R&D: Gen2 Material Identified

- 3.6 mmol/g (16 wt %) working capacity with only a 45 °C temperature swing
- Approximate regeneration energy: 2.2 MJ/kg $CO₂$

ATIONAL

HNOLOGY

Gen2: Humid Breakthrough Experiments

 Breakthrough experiments with pre-humidified column and gas stream show sharp $CO₂$ breakthrough and the expected high capacity

materials

inventys

<u>irrrrr</u>

BERKELEY LAB

Gen2: 1000 Adsorption/Desorption Cycles

inventys

- Stable to 1000 humid adsorption/desorption cycles under simulated coal flue gas conditions (diamine loading after experiment: 99%)
- Gen2 cycling capacity is 50% greater than Gen1 material

ATIONAL

INOLOGY

<u>irrrrr</u>

Plans for Future Testing and Development

Preliminary system testing of Gen1 material

- Process improvements to large scale manufacturing procedure to better integrate with laminate formulation process
- **RTSA testing with VTS bed: steam and hot CO**₂
- In house multi-bed PDU performance testing \rightarrow optimize cycle parameters
- Planning and refinements to design of testing skid at NCCC

Synthesis of improved diamine-appended MOFs (Gen2/Gen3 materials)

- Long term stability assessments of Gen2 material and scale-up evaluation
- Evaluate new diamine-appended MOFs with similar properties of Gen1/Gen2 materials

Further materials improvements

- Use screening database to search for new diamine-appended MOF candidates
- Structure-stability studies of materials $(H₂O, SO_x, NO_x)$ and evaluation of alternate regeneration strategies to recover greater $CO₂$ capacity

Acknowledgements

LBNL

Prof. Jeffrey Neaton Prof. Jeffrey Long Prof. Maciej Haranczyk Dr. Stephanie Didas Dr. Alex Forse Dr. Jung-Hoon Lee Dr. Jeffrey Martell Dr. Phillip Milner Florian Brown-Altvater Matthew Dods Surya Parker Rebecca Siegelman Eric Taw Ziting Zhu Bhavish Dinakar

Mosaic Materials

<u>irrrrr</u>

Dr. Thomas McDonald Joel Gamoras Jason Husk Dr. Graham Wenz

Inventys

Claude Letourneau Dr. Pierre Hovington Jeffrey Alvaji Omid Ghaffari-Nik Nima Masoumifard Sabara Rezaei Matthew Stevenson

Electricore Deborah Jelen

CCSI2: West Virginia University

Prof. Debangsu Bhattacharyya Ryan Hughes

NETL Program Managers

Andrew Jones José Figueroa (former)

inventys

materials

