INITIAL ENGINEERING, TESTING, AND DESIGN OF A COMMERCIAL-SCALE POSTCOMBUSTION CO$_2$ CAPTURE SYSTEM ON AN EXISTING COAL-FIRED GENERATING UNIT

CO$_2$ Capture Technology Project Review Meeting
August 14, 2018
Pittsburgh, Pennsylvania

Jason Laumb, Principal Engineer
PROJECT TEAM AND INDUSTRY SPONSORS

- State of North Dakota – Mike Holmes, LEC/LRC
- ALLETE (BNI, ACE, and MP) – Bill Sawyer
- Minnkota Power – Craig Bleth, Stacey Dahl
- MHI – Tim Thomas, Mike Fowler
- Burns & McDonnell – Ronald Bryant
- EERC – Jason Laumb
GOALS AND OBJECTIVES

• The goal of the project is to determine retrofit costs for a postcombustion CO₂ capture system on an existing coal-fired electric generating unit. Specific objectives to support this goal include the following:
 – Design a fully integrated postcombustion CO₂ capture system for Milton R. Young Unit 2 (MRY2).
 – Evaluate KS-1 solvent on lignite coal-derived flue gas to refine critical design parameters.
 – Complete a techno-economic assessment (TEA) in accordance with DOE’s bituminous baseline study (B12B).
 – Complete a pre-front-end engineering and design (FEED) analysis of the specified postcombustion CO₂ capture system at MRY2.
PROJECT STRUCTURE

• Task 1 – Project Management and Planning
• Task 2 – Testing Demonstration at MRY2
• Task 3 – Techno-Economic Assessment
• Task 4 – Project Engineering and Design
• Task 5 – Pre-FEED Cost Estimate
PROJECT TIME LINE

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0 – Project Management and Planning</td>
<td>6/25/18</td>
<td>12/31/19</td>
</tr>
<tr>
<td>Task 2.0 – Testing Demonstration at MRY</td>
<td>8/1/18</td>
<td>4/30/19</td>
</tr>
<tr>
<td>2.1 – Amine Testing</td>
<td>10/1/18</td>
<td>4/30/19</td>
</tr>
<tr>
<td>2.2 – Slipstream Baghouse Testing</td>
<td>8/1/18</td>
<td>4/30/19</td>
</tr>
<tr>
<td>Task 3.0 – Techno-Economic Assessment</td>
<td>6/25/18</td>
<td>12/31/19</td>
</tr>
<tr>
<td>Task 4.0 – Project Engineering and Design</td>
<td>6/25/18</td>
<td>6/30/19</td>
</tr>
<tr>
<td>4.1 – Design Basis</td>
<td>6/25/18</td>
<td>11/30/18</td>
</tr>
<tr>
<td>4.2 – Utility Requirements</td>
<td>12/1/18</td>
<td>6/30/19</td>
</tr>
<tr>
<td>4.3 – Flow Diagrams</td>
<td>8/1/18</td>
<td>6/30/19</td>
</tr>
<tr>
<td>4.4 – Balance of Plant</td>
<td>6/25/18</td>
<td>11/30/18</td>
</tr>
<tr>
<td>4.5 – Develop Permitting Strategy</td>
<td>6/25/18</td>
<td>11/30/18</td>
</tr>
<tr>
<td>4.6 – Optimization Studies</td>
<td>6/25/18</td>
<td>11/30/18</td>
</tr>
<tr>
<td>Task 5.0 – Pre-FEED Cost Estimate</td>
<td>12/1/18</td>
<td>12/31/19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 – Updated PMP</td>
<td>M1 – Initiated Field Testing</td>
</tr>
<tr>
<td>D2 – Updated TMP</td>
<td>M2 – Design Basis Determined</td>
</tr>
<tr>
<td>D3 – Complete TEA</td>
<td>M3 – Complete TEA</td>
</tr>
<tr>
<td>D4 – HAZOP Review</td>
<td>M4 – Complete Preliminary Pre-FEED Analysis</td>
</tr>
<tr>
<td>D5 – Constructability Review</td>
<td></td>
</tr>
</tbody>
</table>
PROJECT DETAILS – MRY2

- Minnkota Power MRY2
 - 477-MW lignite-fired unit
 - OFA
 - SNCR
 - Halogenated PAC
 - ESP
 - Wet FGD
 - Provides power to eastern North Dakota and northern Minnesota
PROJECT DETAILS – CAPTURE TECHNOLOGY

- MHI Capture Technology
 - KM CDR Process (KS-1 Solvent)
 - Flue gas pretreatment
 - CO₂ recovery
 - Solvent regeneration
 - CO₂ compression and dehydration
 - Based on technology used at Petra Nova
PROJECT DETAILS – CAPTURE INTEGRATION

- Fully integrated steam supply system
 - IP/LP crossover
- 95% capture on MRY2 entire flue gas stream
 - 12,157 tons/day
- Solvent reclaiming
 - Based on field tests
- Aerosol mitigation technology
 - Aerosol impacts based on testing
PROGRESS TO DATE

• Project design basis nearing completion.
 – 95% capture on entire flue gas stream
 – 12,157 tons/day
• Preparation for testing at MRY2.
 – Site visit
 – Test plan development
 – System integration with baghouse
FUTURE WORK

• Finalize project design basis.
 – 1 month out
• Balance of plant
 – Steam study
 – Permitting
• Install test equipment at MRY2.
 – Fall 2018
• Initiate pre-FEED cost analysis.

"PREDICTIONS ARE DIFFICULT, ESPECIALLY REGARDING THE FUTURE."

NIELS BOHR
CONTACT INFORMATION

Energy & Environmental Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018

www.undeerc.org
701.777.5114 (phone)
701.777.5181 (fax)

Jason D. Laumb
Principal Engineer, Coal Utilization Group Lead
jlaumb@undeerc.org