EERC. UN UN IVERSITY OF NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

INITIAL ENGINEERING, TESTING, AND DESIGN OF A COMMERCIAL-SCALE POSTCOMBUSTION CO_2 CAPTURE SYSTEM ON AN EXISTING COAL-FIRED GENERATING UNIT

CO₂ Capture Technology Project Review Meeting August 14, 2018 Pittsburgh, Pennsylvania

Jason Laumb, Principal Engineer

Critical Challenges. Practical Solutions.

© 2018 University of North Dakota Energy & Environmental Research Center.

PROJECT TEAM AND INDUSTRY SPONSORS

- State of North Dakota Mike Holmes, LEC/LRC
- ALLETE (BNI, ACE, and MP) Bill Sawyer
- Minnkota Power Craig Bleth, Stacey Dahl
- MHI Tim Thomas, Mike Fowler
- Burns & McDonnell Ronald Bryant
- EERC Jason Laumb

GOALS AND OBJECTIVES

- The goal of the project is to determine retrofit costs for a postcombustion CO₂ capture system on an existing coal-fired electric generating unit. Specific objectives to support this goal include the following:
 - Design a fully integrated postcombustion CO₂ capture system for Milton R. Young Unit 2 (MRY2).
 - Evaluate KS-1 solvent on lignite coal-derived flue gas to refine critical design parameters.
 - Complete a techno-economic assessment (TEA) in accordance with DOE's bituminous baseline study (B12B).
 - Complete a pre-front-end engineering and design (FEED) analysis of the specified postcombustion CO₂ capture system at MRY2.

PROJECT STRUCTURE

- Task 1 Project Management and Planning
- Task 2 Testing Demonstration at MRY2
- Task 3 Techno-Economic Assessment
- Task 4 Project Engineering and Design

4

• Task 5 – Pre-FEED Cost Estimate

PROJECT TIME LINE

			Budget Period 1																	
	Start	End	2018							2019										
Task	Date	Date	Jun	Jul	Aug Se	p Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Task 1.0 – Project Management and Planning	6/25/18	12/31/19		٦	7 D1	ļ									!					
Task 2.0 – Testing Demonstration at MRY	8/1/18	4/30/19				10.11.		M	1		1									
2.1 – Amine Testing	10/1/18	4/30/19																		
2.2 – Slipstream Baghouse Testing	8/1/18	4/30/19						1		ļ	1							D3		
Task 3.0 – Techno-Economic Assessment	6/25/18	12/31/19									2				1			Ma	;	
Task 4.0 – Project Engineering and Design	6/25/18	6/30/19		1					1				1							
4.1 – Design Basis	6/25/18	11/30/18					M2													
4.2 – Utility Requirements	12/1/18	6/30/19									1									
4.3 – Flow Diagrams	8/1/18	6/30/19								ļ				D4	7					
4.4 – Balance of Plant	6/25/18	11/30/18						1												
4.5 – Develop Permitting Strategy	6/25/18	11/30/18						H												
4.6 – Optimization Studies	6/25/18	11/30/18																D5		
Task 5.0 – Pre-FEED Cost Estimate	12/1/18	12/31/19						¥										M	4	
Delineerskier 🖉								1										LR 7/1	8/18	
Deliverables D1 – Updated PMP	M1_Initi	ated Field			ones															
D2 – Updated TMP	M1 – Initiated Field Testing M2 – Design Basis Determined																			
D3 – Complete TEA	M3 – Complete TEA																			
D4 – HAZOP Review	M4 – Complete Preliminary Pre-FEED Analysis																			
D5 – Constructability Review							.,			I										

Critical Challenges. Pra

PROJECT DETAILS – MRY2

- Minnkota Power MRY2
 - 477-MW lignite-fired unit
 - ♦ OFA
 - SNCR
 - Halogenated PAC
 - ♦ ESP
 - Wet FGD
 - Provides power to eastern North
 Dakota and northern Minnesota

PROJECT DETAILS – CAPTURE TECHNOLOGY

- MHI Capture Technology
 - KM CDR Process (KS-1 Solvent)
 - Flue gas pretreatment
 - ♦ CO₂ recovery
 - Solvent regeneration
 - CO₂ compression and dehydration
 - Based on technology used at Petra Nova

PROJECT DETAILS – CAPTURE INTEGRATION

- Fully integrated steam supply system
 - IP/LP crossover
- 95% capture on MRY2 entire flue gas stream
 - 12,157 tons/day
- Solvent reclaiming
 - Based on field tests
- Aerosol mitigation technology
 - Aerosol impacts based on testing

PROGRESS TO DATE

- Project design basis nearing completion.
 - 95% capture on entire flue gas stream
 - 12,157 tons/day
- Preparation for testing at MRY2.
 - Site visit
 - Test plan development
 - System integration with baghouse

FUTURE WORK

- Finalize project design basis.
 - 1 month out
- Balance of plant
 - Steam study
 - Permitting
- Install test equipment at MRY2.
 - Fall 2018
- Initiate pre-FEED cost analysis.

CONTACT INFORMATION

Energy & Environmental Research Center University of North Dakota

15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org

701.777.5114 (phone) 701.777.5181 (fax)

Jason D. Laumb Principal Engineer, Coal Utilization Group Lead jlaumb@undeerc.org

