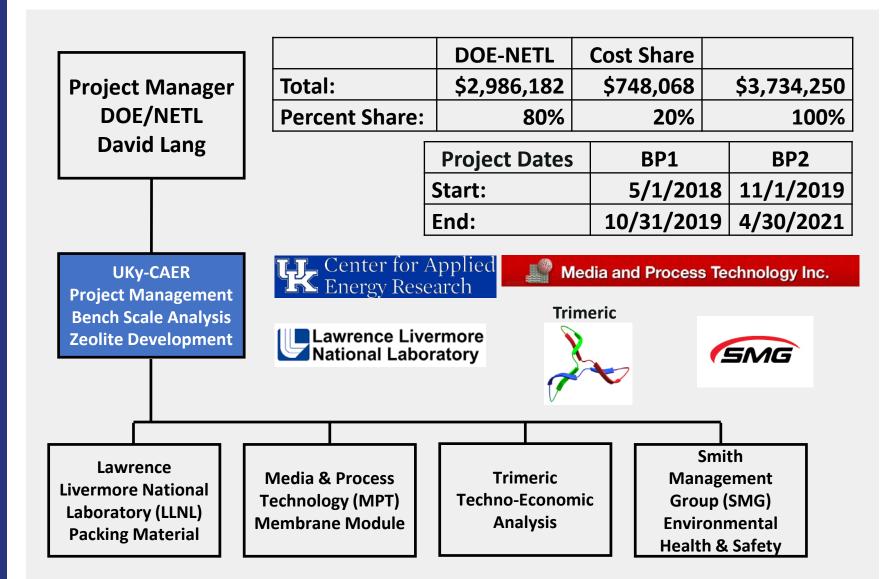
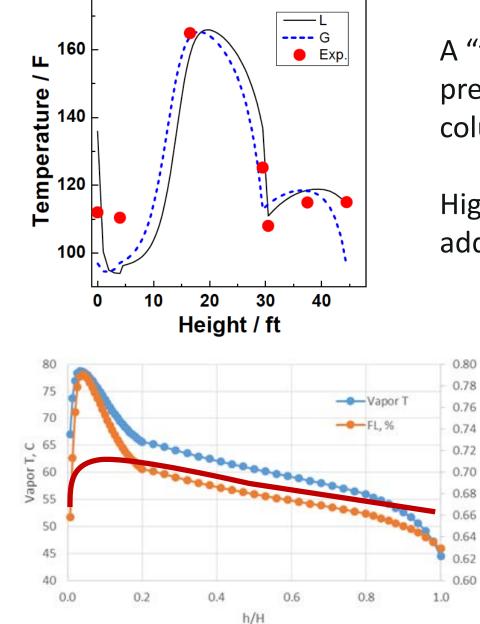

A Process with Decoupled Absorber Kinetics and Solvent Regeneration through Membrane Dewatering and In-Column Heat Transfer

(DE-FE0031604)


August 16, 2018

James Landon and Kunlei Liu University of Kentucky, Center for Applied Energy Research


- 1. Applying 3-D printed two-channel structured packing material to control the absorber temperature profile
- 2. Implementing a zeolite membrane dewatering unit capable of >15% dewatering of the carbon-rich solvent prior to the stripper
- 3. Use of two-phase flow heat transfer prior to the stripper providing a secondary point of vapor generation

Project Team & Funding

Background: Absorber Temperature Profile

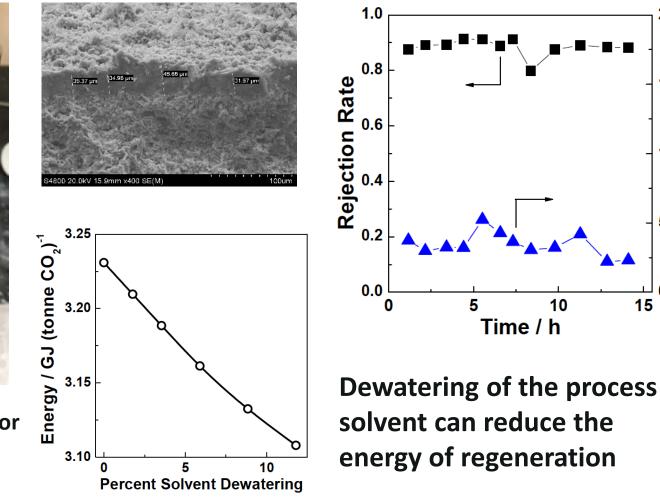
Flooding

A "temperature bulge" is present near the middle of the column.

Higher temperature will impede additional absorption of CO₂.

Absorber height can be reduced if the internal temperature is managed.

4

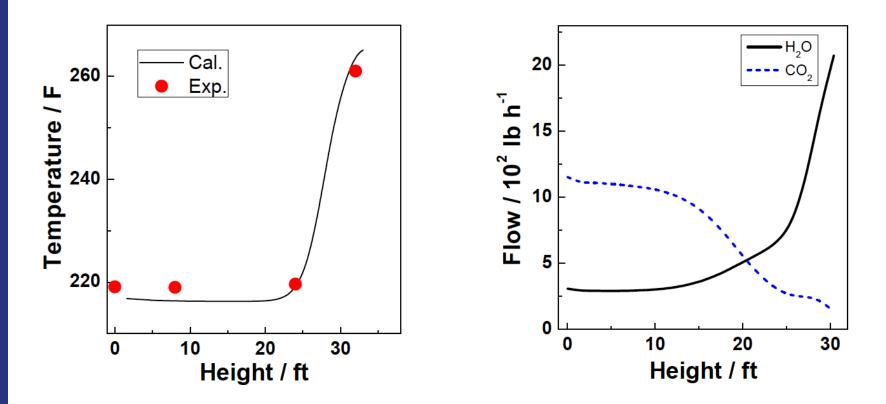

caer.uky.edu

Background: Zeolite Membrane Modules

- Work previously conducted on catalytic zeolite (T) and dewatering (Y)
- Focus on membrane synthesis and modular configurations

Commercially used for water separations

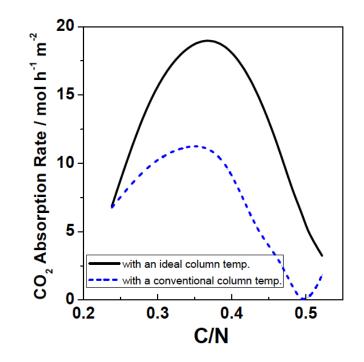
20


Flux /

В

15

¹⁰ နှ


Background: Advanced Stripping & Secondary Vapor Generation Point

Temperature (left) and flow (right) conditions inside a stripping column. Temperature profiles in the column can cause significant energy to be expended to vaporize water (lower CO_2/H_2O ratio).

Project Approach

- Use of heat transfer packing material in the absorber to flatten the temperature profile and increase the CO₂ absorption rate
- Zeolite membrane dewatering of the process solvent to lower the energy cost of regeneration
- Split feed to stripper to provide a secondary vapor generation point

Predicted Plant Efficiency, COE, and CO₂ Capture Cost

TOTAL (STEAM TURBINE) POWER, kWe	740,717
AUXILIARY LOAD SUMMARY, kWe	
Coal Handling & Conveying	510
Pulverizers	3,850
Sorbent Handling & Reagent Preparation	1,260
Ash Handling	740
Primary Air Fans	1,810
Forced Draft Fans	2,770
Induced Draft Fans	10,700
SCR	70
Baghouse	100
Wet FGD	4,150
CO ₂ Capture System Auxiliaries	13,681
CO ₂ Compression	33,469
Miscellaneous Balance of Plant ^{2,3}	2,000
Steam Turbine Auxiliaries	400
Condensate Pumps	832
Circulating Water Pump	7,894
Ground Water Pumps	707
Cooling TowerFans	4,087
Transformer Losses	2,569
TOTAL AU XILIAR IES, kWe	91,599
NET POWER, kWe	649,118
Net Plant Efficiency (HHV)	33.55%
Net Plant Heat Rate (Btu/kWhr HHV)	10,169
Consumables	
As-Received Coal Feed (lb/hr)	565,820
Limestone Sorbent Feed (lb/hr)	57,835

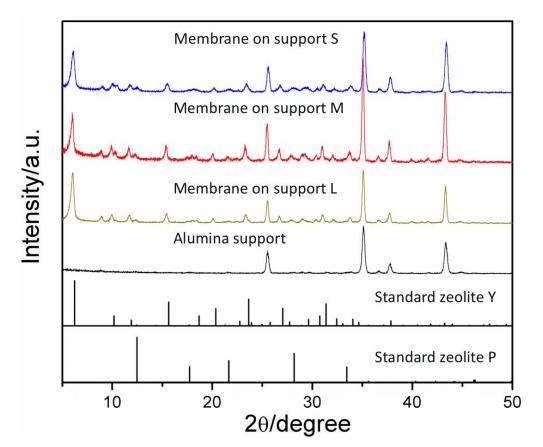
	Case B12A	Case B12B	This Proposal
	Case D 12A	90%	90%
COE (\$/MWh, 2011\$)	82.3	142.8	115.4
CO2 TS&M Costs	0	9.6	8.2
Fuel Costs	24.6	30.9	29.6
Variable Costs	9.1	14.9	11.3
Fixed Costs	9.6	15.2	12.1
Capital Costs	39	72.2	54.1
COE (2011\$/MWh) (excluding T&S)		133.2	107.2
CO ₂ Captured, Ib/MWh		1927	1632
Cost of CO ₂ Captured (\$tonne CO ₂)		66.6	44.8
Cost of CO ₂ Captured (\$tonne CO ₂) (excluding T&S)		58.2	33.6
Incremental COE		73.5%	40.3%
Reduction of Incremental COE from Case 12			45.2%
Reduction of COE from Case 12			19.2%

>19% COE reduction when compared to Case 12

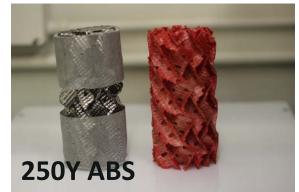
Project Task Schedule & Success Criteria

Task		Title	Year 1	Year 2	Year 3	
1	Project Man	agement and Planning				
2	3-D Printed	Packing Material for Absorber				
	Zeolite Dewa	atering Module Development and				
3	Fabrication					
4		2 Capture Bench Unit Evaluation				
5	Test Plan De					
		f Proposed Technique at 0.1 MWth				
6		stion CO2 Capture Facility				
-		Density and Performance Zeolite Y				
7	Membranes	a lite and Alternative Devetation				
8	Membrane	eolite and Alternative Dewatering				
9		omic Analysis				
10		•				
	Topical Report Preparation and Submission					
Decisio	cision Point Success Criteria					
Budget Period 1 1. Peak Absorber Temperature Reduced by >10 °C Confirmed						
5		2. Zeolite Y Membranes w	vith Fluxes >10 kg/	m ² /h at Reiect. Rate	es >90%	
		3. Dewatering Zeolite Y Module Design Complete with >200 m^2/m^3				
			/ 111			
	4. Test Plan Complete for 0.1 MWth Capture Unit					
Budget	get Period 2 1. Stripper Heat Int. >10% Energy Savings on 0.1 MWth Capture Unit				Unit	
	2. Long-Term Energy Savings of >15% from 1000-hour Process Study			itudy		
	3. Dewatering Membrane Packing Density Increase to >400 m^2/m^3			′m³		
	4. Aspen Model for Entire Integrated System					
	5. TEA Complete for Integrated Process					
	6. EH&S Assessment Complete for Integrated Process					
	7. Updated State Point Data Table for Membrane			0		

Unique Facility: Small & Large Bench Units

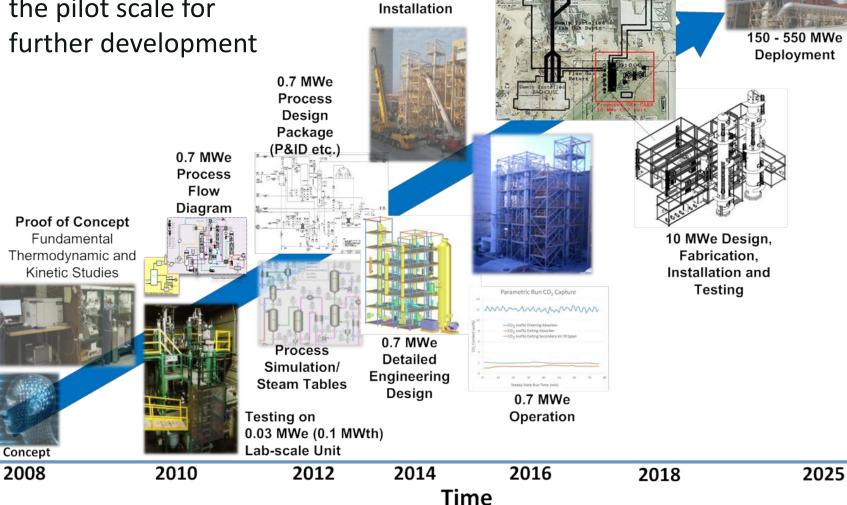

0.1 MWth CO₂ Capture Unit

Project Risk Management


Risk Assessment, Management Mitigation and Response Strategies.				
Description of Risk	TRL	Probability	Impact	Risk Management Mitigation and Response Strategies
Technical Risks				
Dewatering Membrane Flux too Low	3	М	м	 Relocate the membrane to high- temperature site Increase the rejected pressure Alternative zeolite-type such as T-zeolite
Liquid/Gas Contact Impeded by Packing Heat Transfer Structure	3	L	М	Modify the geometrySurface treatment
Printing Material not Compatible for Application (poor heat transfer efficiency)	3	L	н	 Redesign internal surface with turbulence generator Change metal material
Current Large CCS Strippers Configuration not Adequate for Split Feed	4	L	М	Modifications will be made to current vessel, or new vessel will be obtained

Progress and Current Status

Stability testing in CAER solvent completed on acrylonitrile butadiene styrene (ABS), polystyrene (PS), and high-density polyethylene (HDPE). Example packing materials have been printed by LLNL (on right).



Zeolite Y membranes have been grown on alumina support materials, confirmed phases through XRD. Scale

Future Testing

Validated concepts will be expanding to the pilot scale for further development

0.7 MWe

Fabrication and

- DOE-NETL: David Lang, Lynn Brickett, José Figueroa
- UKy-CAER: Feng Zhu, Zhen Fan, Landon Caudill, Jonathan Bryant, Jesse Thompson, Otto Hoffman, Bradley Irvin, and Lisa Richburg
- Duke Energy, LG&E-KU, EPRI, CMRG Members