Advanced Manufactured Carbonate Materials for Algal Biomass Production: Joint LLNL-SNL Program

NETL CO₂ Capture Technology Project Review Meeting

August 16, 2018

LLNL: Jennifer Knipe, Sarah Baker, Maira Ceron-Hernandez, Matthew Worthington, Sean McCoy, William Bourcier

SNL: Todd Lane, Mary Tran-Gyamfi

DOE NETL Project Manager: Andrew Jones

LLNL-PRES-756481

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Budget - 1 year FWP 10/1/17-9/30/18

	Government Share
Lawrence Livermore National Laboratory	\$390,000
Sandia National Laboratory	\$360,000
Total	\$750,000

	Lawrence Livermore National Laboratory - Fiscal Year 1							
	10/01/2017 - 12/31/2017		1/1/2018 - 3/31/2018		4/1/2018 - 6/30/2018		7/1/2018 - 9/30/2018	
	Q1	Total	02	Total	Q3	Total	Q4	Total
		Project	Q2	Project		Project		Project
Federal Share	\$112,500	\$112,500	\$92,500	\$205,000	\$92,500	\$297,500	\$92,500	\$390,000
Total Planned	\$112,500	\$112,500	\$92,500	\$205,500	\$92,500	\$297,500	\$92,500	\$390,000

	Sandia National Laboratory - Fiscal Year 1							
	10/01/2017 - 12/31/2017		1/1/2018 - 3/31/2018		4/1/2018 - 6/30/2018		7/1/2018 - 9/30/2018	
	01	Total	02	Total	Q3	Total	Q4	Total
	QI	Project	Q^2	Project		Project		Project
Federal Share	\$90,000	\$90,000	\$90,000	\$180,000	\$90,000	\$270,000	\$90,000	\$360,000
Total Planned	\$90,000	\$90,000	\$90,000	\$180,000	\$90,000	\$270,000	\$90,000	\$360,000

Project Objectives

Milestone Schedule

Task	Milestone Description	Project Duration Start: October 1, 2017 End: September 30, 2018 Project Year (PY) 1				Planned Start Date	Planned End Date
		Q1	Q2	Q3 Q4			
1.0	Project Management and Planning					1-Oct-17	30-Sept-18
2.1	Synthesize multigram quantities of carbonate materials	х				1-Oct-17	15-Nov-17
2.2	Measurements of CO ₂ release rates and quantities	х				1-Oct-17	31-Dec-17
2.3	Materials Biocompatibility Evaluation		х			1-Oct-17	30-Jan-18
2.4	Materials Selection for scale-up and TEA		х			1-Feb-18	31-Mar-18
3.1	Material delivery method determined			X		1-Apr-18	30-Jun-18
3.2	Scaleup materials synthesis to kg scale				Х	1-Apr-18	30-Sep-18
3.3	Pilot scale testing				Х	1-Apr-18	30-Sep-18
3.4	Measure material capacity during cycling				Х	1-Aug-18	30-Sep-18
4.1	Identify Process Configurations for capture, transport, delivery		X			1-Oct-17	30-Mar-18
4.2	Refine Process Configuration and cost model				Х	1-Apr-18	30-Aug-18
4.3	Finalize results of technoeconomic and lifecycle assessments				Х	30-Aug-18	30-Sep-18

Success Criteria

June 30, 2018 (FY18)

Carbonate materials can support algal growth at laboratory scale.

Sept. 30, 2018 (FY18)

Carbonate materials can be loaded with CO_2 and unloaded in marine media with <10 % loss in capacity over 10 cycles.

Team

Key Personnel	Institution	Time	Tasks	Title, Roles			
I Knine	LINI	30%	Tacks 1 2 3	Post Doctoral Researcher, Task			
J. Kinpe	LLINL	3070	1asks 1,2,5	Lead 2-3, Co-PI			
S. Baker	LLNL	10%	Tasks 1,2,3,4	Staff Scientist, Co-PI			
				Post-Collegiate Appointee,			
M. Worthington	LLNL	30%	Tasks 2,3	Carbonate Materials			
				Characterization			
M. Concer Homes des	LLNL	30%	Ta alaa 2.2	Staff Scientist, Carbonate Materials			
M. Ceron-Hernandez			Tasks 2,5	Design and Scale-up			
C M C	LLNL	20%	T 1 4	Energy analyst, Process Design and			
S. MCCOY			Task 4	Economic Analysis			
W. Deserveier		1.00/	Ta ala 0	Geochemist, Model carbonate			
w. Bourcier	LLINL	10%	Task Z	species and pH response			
T. Lane	SNL	15%	Tasks 2,3	Sandia PI, Lead Phycologist			
				Technical Staff Algae cultivation			
M Tran-Gyamfi	SNL	50 %	Tasks 2 3	characterization of nutrients			
in the Oyunni			145HD 2,5	biomass, and growth			
				cromuss, und growin			

CO₂-loaded materials can be used for algae production

3) Reduce capture costs up to 75%

Microencapsulation: an enabling technology for CO₂ solvents

Sorbent-polymer composites printed with Direct Ink Write (DIW)

- Ink can be loaded with as much as ~60 wt% carbonate
- Particulate sizes sieved as small as possible for best performing ink

Subtask 2.1 – Scaled material synthesis to multigram quantities for testing

100s g/day produced

Lawrence Livermore National Laboratory

Subtask 2.2 - Measured CO₂ absorption and release rates and quantities

Measure pH of marine media over time to monitor rate of CO₂ release

 $\begin{array}{c} \mbox{Measure CO}_2 \\ \mbox{pressure drop over} \\ \mbox{time to monitor} \\ \mbox{CO}_2 \mbox{ absorption} \end{array} \right | \begin{tabular}{c} \end{tabular} Valve & 3-Way Ball Valve & Vacuum Pump \\ \end{tabular} \end$

Subtask 2.2 - Measured CO₂ absorption and release rates and quantities of capsules

- Loading capacity decreases with cycling
- pH drop less & slower than predicted

Capsules not fully releasing CO₂??

Subtask 2.2 - Measured CO₂ absorption and release rates and quantities of composite mesh

Subtask 2.3 - Materials are biocompatible

Subtask 3.1 – Material delivers CO₂ for algal growth

Subtask 3.4 – Material capacity maintained over cycling

- 20 wt% carbonate with sylgard coating- not dried between cycles
- Lower carbonate loading lost <1 wt%
- Loading very reproducible but not all CO₂ is released
- pH drop tracks with TIC increase as expected

Task 3: Testing selected materials to support algal growth and CO₂ cycling

Subtask 3.2 – Scale up materials synthesis

- Synthesis of selected carbonate material(s) at kilogram scale
- The scale-up method employed may require different manufacturing techniques such as using a vibrating coaxial tip rather than microfluidics to produce encapsulated carbonate solutions

Subtask 3.3 – Pilot-scale testing

Task 4. Process synthesis and Techno-economic analysis

- Subtask 4.1 Identify process configurations for capture, transport and delivery
 - Identify an integrated process to capture, transport, and deliver CO₂ using carbonate materials
 - Include details of transport of carbonate materials to algal farms, on-site delivery of CO₂ to algal ponds or bioreactors, and recovery and recycling of the carbonate materials

Subtask 4.2 - Refine process configuration and cost model

- Estimate the capital and operating costs of the process for several different CO_2 supply scenarios to provide a per ton estimate of the cost of CO_2 supply and profitability of the system
- GHG emissions will also be estimated and reported
- Subtask 4.3 Finalize results of techno-economic and lifecycle assessments
 - Complete an initial TEA and LCA
 - Compare the results of the TEA and gate-to-gate LCA to an equivalent system that delivers liquefied CO_2

- Measured CO₂ loading/release rates in marine media with two material formulations
- Verified biocompatibility and selected carbonate composite meshes for scale-up
- Demonstrated cyclability of material in marine media
- Continuing Task 3: Scale up & Pilot Scale and Task 4: Process Design & TEA
 - Demonstration of comparable algal growth with CO₂ delivered from material at mL to L scales
 - Obtaining data for process design & TEA

Advanced Manufactured Carbonate Materials for Algal Biomass Production: Joint LLNL-SNL Program

NETL CO₂ Capture Technology Project Review Meeting

August 16, 2018

LLNL: Jennifer Knipe, Sarah Baker, Maira Ceron-Hernandez, Matthew Worthington, Sean McCoy, William Bourcier

SNL: Todd Lane, Mary Tran-Gyamfi

DOE NETL Project Manager: Andrew Jones

LLNL-PRES-756481

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

