Bench-Scale Development of a Transformative Membrane Process for Pre-Combustion CO$_2$ Capture (DE-FE0031632)

Karl Amo, Richard Baker, Brice Freeman, Jenny He, Ivy Huang, Jay Kniep (PI), Tim Merkel, Witopo Salim

Membrane Technology and Research, Inc.

DOE NETL Review Meeting
August 27, 2019
Project Overview

Award name: Bench-Scale Development of a Transformative Membrane Process for Pre-Combustion CO₂ Capture (DE-FE0031632)

Project period: 10/1/18 to 9/30/21
Funding: $2.0 million DOE; $0.5 million cost share ($2.5 million total)
DOE program manager: Andy Aurelio
Participants: MTR, Susteon, Energy & Environmental Research Center (EERC)

Project scope: Optimize Gen-2 Proteus membrane and develop modules capable of operation at 200°C; demonstrate membrane module performance processing coal-derived syngas during field test at EERC; optimize integration of membrane processes into IGCC with carbon capture

Project plan: The project is organized in three phases:
- **Budget Period 1/Year 1** – Gen-2 Proteus membrane optimized, high temperature module components identified
- **Budget Period 2/Year 2** – Gen-2 Proteus modules tested at MTR; fabricate field test skid
- **Budget Period 3/Year 3** – Install skid and conduct field test at EERC, analyze results, update TEA with field test performance and optimized membrane process design
Membrane advantages:

- Can operate warm/hot to reduce the need for heat exchange
- CO$_2$ is maintained at pressure; less compression compared to standard AGR
- Water goes with fuel gas; reduces CO$_2$ dehydration costs
• Collaborated with Jim Black at DOE NETL and Peter Kabatek at WorleyParsons to analyze MTR process

• Compared to GE Gasifier with 2-stage Selexol (Case 2 of DOE Bituminous Baselines Study), MTR process shows 27 MW\text{e} net power improvement and 7.4% lower COE with Gen-1 Proteus membrane properties

• Both warm (H\textsubscript{2} membrane) and cold (CO\textsubscript{2} membrane) portions of process tested at NCCC
Background: H₂-Selective Proteus Membrane

- Temperature limit: 150°C
- Average H₂/CO₂ = 15
- NCCC field tests (2009 – 2016)
  - Stamps and lab-scale modules: 5,500 hours
  - Semi-commercial modules: 3,625 hours
- Additional industrial field tests
  - H₂ recovery in bio-waste to ethanol process
  - Syngas ratio adjustment in gas to liquids process

Gen-1 Proteus Stamp Selectivity at NCCC

Gen-2 Proteus Stamp Selectivity at NCCC

- Temperature limit: 200°C
- Average H₂/CO₂ = 30
- H₂/H₂S > 50
- H₂/CH₄, H₂/N₂, H₂/CO all >100
- Field test data consistent with lab results
Project Objectives

- Optimize and scale-up Gen-2 Proteus membrane
- Develop high temperature Gen-2 Proteus membrane modules for use in coal gasification environments
- Design, fabricate, and operate bench-scale membrane module skid at a EERC field test with coal-derived syngas
- Move the Gen-2 Proteus membrane pre-combustion capture technology from TRL 4 to TRL 5
- With project partner Susteon, evaluate sulfur treatment options and optimize alternative membrane process designs for integration into an IGCC plant
- Update TEA incorporating field test performance data and optimized membrane process design for pre-combustion CO₂ capture
Stages of Membrane Development

1) Membrane stamps (Budget Period 1)
   Area: 0.0030 m²
   Flow: 1 lb/h

2) Lab-scale module (Budget Period 2)
   Area: 0.130 m²
   Flow: 10 lb/h

3) Semi-commercial module (Budget Period 3)
   Area: 1 - 4 m²
   Flow: bench-scale (50 lb/h)

4) Commercial module
   Area: 20 – 50 m²
   Flow: field demonstration (500 lb/h)
Budget Period 1 Tasks:
Prepare Gen-2 Proteus Membrane with Target Performance

- Gen-2 Proteus membrane has successfully been synthesized on various membrane substrates
- A post-fabrication treatment technique was developed that improved the membrane $\text{H}_2/\text{CO}_2 = 50$, a significant improvement over the project success criteria of 30
Newly developed technique significantly improves $\text{H}_2/\text{CO}_2$ selectivity while maintaining $\text{H}_2$ permeance values.
Budget Period 1 Tasks: Identify High Temperature Module Components

Example of steam tests with Spacers A and B

- Test conditions
  - Up to 1000 psig, 200°C
  - Inert gas, steam, or wet/dry gas mixtures (H₂, CO₂, N₂)

Spacer A showed deformation at 160°C, results at higher temperatures were worse

Spacer B showed no signs of deformation or brittleness after exposure tests up to 200°C
Budget Period 1 Tasks: Evaluate Alternative Process Designs

- Working with Susteon to identify and optimize integration of membranes into the IGCC process for pre-combustion CO$_2$ capture
- One example: Placing the Proteus membrane after the Quench and Syngas Scrubber (Case B5B Stream 10)

Stream 10 Conditions
- 800 psia
- 206°C
- Main Separation: H$_2$/CO

Standard Proteus Placement
- 750 psia
- 200°C
- Main Separation: H$_2$/CO$_2$

Reference: NETL Cost and Performance Baseline for Fossil Energy Plants Volume 1b: Bituminous Coal (IGCC) to Electricity Rev. 2b-Year Dollar Update, 2015. (pg, 198)
Budget Period 2 Scope of Work

- No deviations planned in BP2 work scope or budget
  - Task 6: Prototype High Temperature Module Tests at MTR
  - Task 7: Design and Fabricate Bench-Scale Field Test Skid
  - Task 8: Optimize Process Designs

- BP2 budget: $823,265
  - $658,612 Federal, $164,653 Cost Share

- BP2 milestones associated with:
  - Scale-up and preparation of Gen-2 Proteus membrane (Q5)
  - Lab-scale Gen-2 Proteus modules prepared (Q6)
  - Finalize bench-scale field test system design (Q6)
  - Field test system passes FAT, ready to ship to field test site (Q8)
Summary

• Membranes have some advantages for pre-combustion CO$_2$ capture and H$_2$ purification
• Gen-2 Proteus membrane has been made with H$_2$/CO$_2$ = 50 (success criteria was H$_2$/CO$_2$ = 30)
• Module components have been identified for use in syngas environments at high temperatures
• Budget Period 2 tasks include mixed-gas module testing at MTR and fabrication of field test skid
Acknowledgements

- U.S. Department of Energy, National Energy Technology Laboratory
  - Andy Aurelio

- Susteon
  - Raghubir Gupta
  - Brian Turk

- EERC
  - David Dunham
  - Mike Swanson
  - Joshua Stanislowski