Integrated Characterization of CO₂ Storage Reservoirs on the Rock Springs Uplift Combining Geomechanics, Geochemistry, and Flow Modeling Project Number DE-FE0023328

John Kaszuba University of Wyoming

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Presentation Outline

- Technical status
 - Objectives
 - Geomechanics
 - Rock physics & seismic
 - Petrophysics
- Accomplishments to date
- Lessons learned
- Synergy opportunities
- Project summary

Technical Status

- Overall Objective: Improve understanding of the effects of CO₂ injection and storage on geomechanical and petrophysical properties.
 - Combines integrated, interdisciplinary methodology using existing data sets (Rock Springs Uplift in Wyoming)
 - Culminates in integrated workflow for potential CO₂ storage options

Multidisciplinary Team

- Vladimir Alvarado: Assistant Project Manager, Reservoir Engineering
- Erin Campbell: Structural Geology, Geomechanics, Wyoming Geology
- Dario Grana: Rock Physics
- John Kaszuba: Project Manager, Geochemistry
- Kam Ng: Geomechanics

Rock Springs Uplift, WY

Target Formations

6

Geomechanical Results: Ss Perpendicular to Bedding

Brittle failure for sandstone reacted with brine and with brine + CO_2

Compiled from Yu et al., 2018, 2018 and 2018 (all submitted)

Geomechanical Results: Shear Modulus (G) of Ss

No significant effect due to reaction and anisotropy(?)

Compiled from Yu et al., 2018, 2018 and 2018 (all submitted)

Geomechanical Results: Do Parallel to Bedding

Deformation changed from brittle to ductile at higher differential pressure. Effect of CO_2 on Young's modulus and Poisson's ratio indeterminate

Compiled from Yu et al., 2018, 2018 and 2018 (all submitted)

Rock Physics/Seismics Elastic Properties

Well log data show clear trend in elastic properties. Ss (yellow dots) and Do (grey squares and grey diamonds) can be discriminated by absolute values of P-wave velocity and Vp/Vs

Rock Physics/Seismics Elastic Moduli

The trend also observed in the elastic moduli. In the Do the saturated-rock bulk and shear moduli decrease as a function of porosity

Rock Physics/Seismics 3D Porosity Model

By combining seismic inversion results and rock physics models, 3D model of porosity was computed for Weber Ss & Madison Ls.

Petrophysics NMR T₂ and Diffusion Coefficient

Diffusion coefficient distribution derived by regularized Inverse Laplace Transform method compares well to NMR T_2 distribution.

Wang and Alvarado 2018

Petrophysics Diffusion Coefficient Weber Ss

Diffusion coefficient represents pore-size distribution. Quartz overgrowth and cements (calcite and anhydrite) in Weber 2 produces smaller diffusion coefficient.

Wang et al., 2018

Accomplishments to Date

- Completed geomechanical characterization of Weber Sandstone and Madison Limestone
- Completed detailed geophysical reservoir characterization
- Developed accurate rock physics modeling linking elastic and petrophysical properties
- Demonstrated that diffusion coefficient distribution is similar to NMR T2 distribution
- Used T2 distribution to characterize pore size distribution
 Weber Ss and Madison Ls
- Two PhD students successfully defended, now postdocs
- Papers in refereed literature: 2 published, 1 in press, 3 in review, 2 in preparation

Lessons Learned

- Difficulties in running high temperature and pressure triaxial experiments
- Need of high-resolution seismic data for seismic reservoir characterization
- Need of time-lapse seismic and electromagnetic data for reservoir monitoring
- Reminder of the challenge of multiple disciplines on one project

Synergy Opportunities

- Hosted Dr. P. Newell (University of UT) for seminar; potential collaboration with to model geomechanical data
- Integration of rock physics and reservoir characterization with laboratory experiments (Dr. M. Prasad, CSM)
- Integration of rock physics and reservoir characterization with fluid flow simulation (Dr. M. Wheeler, UT)
- Special issue published in 2017, SEG journal Interpretations (Editor Dr. Grana, guest editors Dr's Alvarado, Wheeler, Prasad, and Kaszuba)
- Collaboration with Center for Economic Geology Research, UW on JGR paper (McLaughlin, Bagdonas)

Project Summary

- Apparent effect of CO₂ on geomechanical behavior not observed on Weber Ss but on Madison Ss
- Accurate rock physics and seismic reservoir modeling improve the model predictions
- NMR T2 distribution and short time-limit diffusion coefficient distribution used to characterize Weber Ss and Madison Ls
- Geophysical responses to microstructural and petrophysical change for Weber Ss samples after CO₂ reaction not obvious

Questions?

Appendix

Benefit to the Program

- Program goals addressed:
 - Develop and validate technologies to ensure 99% storage performance
 - Develop Best Practice Manuals (BPMs) for monitoring, verification, accounting (MVA), and assessment; site screening, selection, and initial characterization; public outreach; well management activities; and risk analysis and simulation.

Benefit to the Program

• Project benefits statement:

The project will conduct research under Area of Interest 1, Geomechanical Research, by developing a new protocol and workflow to predict the post-injection evolution of porosity, permeability and rock mechanics, relevant to estimated rock failure events, uplift and subsidence, and saturation distributions, and how these changes might affect geomechanical parameters, and consequently reservoir responses. The ability to predict geomechanical behavior in response to CO2 injection, if successful, could increase the accuracy of subsurface models that predict the integrity of the storage reservoir.

Project Overview

Goals and Objectives

- Overall Objective: Improve understanding of the effects of CO₂ injection and storage on geomechanical, petrophysical, and other reservoir properties.
 - 1. Combines integrated, interdisciplinary methodology using existing data sets (Rock Springs Uplift in Wyoming)
 - 2. Culminates in integrated workflow for potential CO_2 storage operations
- Specific Objectives
 - 1. Test new facies and mechanical stratigraphy classification techniques on the existing RSU dataset
 - 2. Determine lithologic and geochemical changes resulting from interaction among CO₂, formation waters, and reservoir rocks in laboratory experiments

Project Overview

Goals and Objectives

• Specific Objectives (continued)

3. Determine the effect(s) of CO2-water-reservoir rock interaction on rock strength properties; this will be accomplished by performing triaxial strength tests on reacted reservoir rock and comparing the results to preexisting triaxial data available for reservoir rocks

- 4. Identify changes in rock properties pre- and post-CO2 injection
- 5. Identify the parameters with the greatest variation that would have the most effect on a reservoir model
- 6. Make connections between elastic, petro-elastic, and geomechanical properties
- 7. Develop ways to build a reservoir model based on post-CO2-injection rock properties
- 8. Build a workflow that can be applied to other sequestration characterization sites, to allow for faster, less expensive, and more accurate site characterization and plume modeling.

Project Overview

Goals and Objectives

• Relationship to DOE program goals:

Our approach can be adapted to other sites to guide site characterization and design surveillance and monitoring techniques to meet the goal of 99% safe storage, reach $\pm 30\%$ model accuracy, contribute to the BPM, and reduce time and cost of site characterization.

Organization Chart

Figure 1. Organizational chart.

Gantt Chart

ID T	ask Name
T	ask 1.0 – Project Management
2	nd Planning Subtask 1.1 – Project
-	Management Plan (PMP).
3	Management Plan
4	Subtask 1.2 – Project Meeting
5	Milestone B. Kickoff Meeting
6	Subtask 1.3 - Reporting
7	Subtask 1.4 – Project
	management
8	ask 2.0 – Construction of Idvanced Rock Property Mode
9	Subtask 2.1 – Formation Eval
10	Subtask 2.2 – Facies Classifica
11	Subtask 2.3 – Rock Physics
12	Subtask 2.4 – Refine
13	Geomechanical Model and Subtask 2.5 – Report of
	Advanced Rock Property
14	Milestone C. Quick-Look
15 2	Report-Task 2 Summary
Ċ	O2-Water-Rock Experiments
16	Subtask 3.1 –Select and Obtai Samples for Experiments
17	Milestone D. List of Rock Samples Selected/Obtained fr
	CO2-Water-Rock Experiments
18	Subtask 3.2 – Characterize Samples for Experiments
19	Subtask 3.3 – Perform Geochemical Calculations and
	Use Results to Design Plan for
	Experiments
20	Milestone E. Quick-Look Report-Experimental Plan
21	Subtask 3.4 Perform
	Experiments
22	Milestone F. Initiate CO2-Water-Rock Experiments
23	Subtask 3.5 – Update
	Use Results to Design Plan for
24	Coreflood Experiments Milestone G. Interim Report
75	with Plan for Coreflood
25	Subtask 3.6 – Perform Geochemical Saturation and
26	Coreflooding Experiments Subtask 3.7 Report of
	Experimental Results
27	Milestone H. Quick-Look Report-Results of
28	CO2-H2O-Rock Experiments Task 4.0 – Geomechanical
	Experiments
29	Subtask 4.1 – Triaxial Exper
30	Milestone I. Initiate segmechanical experiment
31	Milestone J. Interim Repor
	or paseline geomechanical experiment results
32	Subtask 4.2 – Evaluation of Geomechnical Properties
33	Subtask 4.3 – Report of
	Analyses
34	Milestone K. Quick-Look Report-Geomechanical
36	Experiments
P	hysics Model Development
36	Milestone L. Quick-Look Report-Task 5 Summary
37 T	ask 6.0 –Build Initial Static
G	eophysical Measurements
38	Subtask 6.1 –Seismic Reservo Characterization
39	Milestone M. Interim Report Subtask 6.1
40	Subtask 6.2 – Reservoir
41	Milestone N. Quick-Look
42 1	Report-Task 6 Summary ask 7.0 – Conduct Fluid Flow
5	conduct riald flow
	imulations
43	imulations Subtask 7.1 – Time-independent and
43	imulations Subtask 7.1 – Time-independent and Milestone O. Initiate Simulati
43	imulations Subtask 7.1 – Time-independent and Milestone O. Initiate Simulatio Subtask 7.2 – Time-dependen
43 44 45 46	imulations Subtask 7.1 – Time-indepandent and Milestone O. Initiate Simulatic Subtask 7.2 – Time-dependen model update Milestone P. Quick-Look
43 44 45 46 47	imulations Subtask 7.1 – Time-independent and Milestone O. Initiate Simulatio Subtask 7.2 – Time-dependen model update Milestone P. Quick-Look Report-Task 7.5 ummary W4.6 O. Interactor Rev. 1997
43 44 45 46 47	imulations Subtask 7.1 – Time-independent and Milestone O. Initiate Simulati Subtask 7.2 – Time-depender model update Milestone P. Quick-Look Report-Task 7 Summary ask 8.0 – Integrate Results to Ienerate Workflow
43 44 45 46 47 6	imulations Subtask 7.1 – Time-independent and Milestone O. Initiate Simulation Subtask 7.2 – Time-dependent model update Milestone P. Quick-Look Report:Task 7. Summary sak 8.0 – Integrate Results to Ienerate Workflow Incorporating Reservoir norditions, Experimental Data,

Bibliography

Grana, D., Verma, S., Pafeng, J., Lang, X., Sharma, H., Wu, W., McLaughlin, F., Campbell-Stone, E., Ng, K., Alvarado, V., Mallick, S., and Kaszuba, J., 2017, A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming. International Journal of Greenhouse Gas Control, v. 63; pg. 296-309.

Wang, H., and Alvarado, V., 2018, Ionic strength-dependent pre-asymptotic diffusion coefficient distribution in porous media – Determination through the pulsed field gradient technique. Journal of Natural Gas Science & Engineering, v.49, pg. 250-259.

Wang, Heng, Alvarado, Vladimir, McLaughlin, Fred, Bagdonas, Davin, Kaszuba, John, Campbell, Erin, and Grana, Dario, 2018. Low-field nuclear magnetic resonance characterization of carbonate and sandstone reservoirs from Rock Spring Uplift of Wyoming. Journal Geophysical Research-Solid Earth, in press.

Yu, H., Ng, K.W., Kaszuba, J., Drana, D., Alvarado, V., and Campbell, E., 2018, A methodology of estimating elastic constants and crack propagation thresholds in brittle rock. International Journal of Rock Mechanics and Mining Sciences. (Submitted)

Bibliography (continued)

Yu, H., Ng, K.W., Drana, D., Alvarado, V., Kaszuba, J., and Campbell, E., 2018, A generalized power law failure criterion for rock. Canadian Geotechnical Journal. Submitted.

Yu, H., Ng, K.W., Drana, D., Kaszuba, J., Alvarado, V., and Campbell, E., 2018, Experimental investigation of the effect of compliant pores on reservoir rocks under hydrostatic and triaxial compression stress states. Canadian Geotechnical Journal. 2nd revised submission.

Appendix – Technical Data

Geochemical Preparation	Sample ID	Depth (m)	(MPa)	(MPa)	P _d (MPa)	T (°C)
	SV1	3527.21	42.4	35.4		90
	SH1	3415.97	43.4		8.0	
Group 1: Saturated with	SV2	3527.24	71.0		35.6	
brine for 24 hours	SH2	3416.83				
	SV3	3527.08	017		56.3	
	SH3	3416.80	91.7			
	SV1b	3415.6-3417.5	12 1	35.4	8.0	90
	SH1b	3413.8-3415.6	43.4			
	SV2b	3413.8-3415.6	71.0		35.6	
Crown 2. A and with	SH2b	3413.8-3415.6	/1.0			
Group 2: Aged with	SV3b	3413.8-3415.6	017		56.3	
brine for 800 hours	SH3b	3413.8-3415.6	91.7			
	DH1b	3765.1-3767.0	46.2		6.9	
	DH2b	3784.4-3786.2	73.8 39.3		34.5	93
	DH3b	3763.4-3765.9	94.5		55.2	
	SV1c	3413.8-3415.6	12 1	35.4	8.0	90
	SH1c	3413.8-3415.6	43.4			
	SV2c	3413.8-3415.6	71.0		35.6	
Group 3: Aged with	SH2c	3526.4-3528.2	/1.0			
brine for 400 hours +	SV3c	3413.8-3415.6	91.7		56.3	
CO_2 for 400 hours	SH3c	3413.8-3415.6				
	DH1c	3765.1-3767.0	46.2	39.3	6.9	93
	DH2c	3765.1-3767.0	73.8		35.6	
	DH3c	3765.1-3767.0	94.5		56.3	

Geomechanical Results: Vertical Sandstone

Sample ID	P _d (MPa)	φ (%)	E (GPa)	ΔE (%)	υ	Δυ (%)	σ _{pk} (MPa)	$\Delta \sigma_{ m pk}$ (%)
SV1b	8	7.494	42.1	-4.8	0.24	20.8	282.7	-17.9
SV1c		9.201	40.1		0.29		232.2	
SV2b	35.6	9.801	31.4	54.5	0.29	-51.7	440.3	9.6
SV2c		8.750	48.5		0.14		482.7	
SV3b ^{\$}	56.3	9.404	41.6	18.3	0.23	-26.1	265.6	116.7
SV3c		16.859	49.2		0.17		575.6	

Geomechanical Results: Bulk Modulus (K) of Sandstone

Geomechanical Results: Shear Modulus (G) of Sandstone

Geomechanical Results: Horizontal Dolomite

Sample ID	ф (%)	E (GPa)	ΔE (%)	υ	Δυ (%)	σ _{pk} (MPa)	$\Delta \sigma_{ m pk}$ (%)
DH1b	17.834	27.8	175	0.42	-26.2	134.7	60.7
DH1c	9.384	41.0	47.5	0.31		216.5	
DH2b ^{\$}	13.345	24.6	0.4	0.42	-38.1	65.2	92.6
DH2c	23.784	24.5	-0.4	0.26		125.6	
DH3b	15.352	34.2	12.0	0.22	13.6	150.0	-2.5
DH3c	23.256	29.7	-13.2	0.25		146.2	

Geomechanical Results: Bulk Modulus (K) of Dolomite

Geomechanical Results: Shear Modulus (G) of Dolomite

