

Update on Pilot Unit of Sorbent Based Post-Combustion CO₂ Capture Project # DE-FE0012870

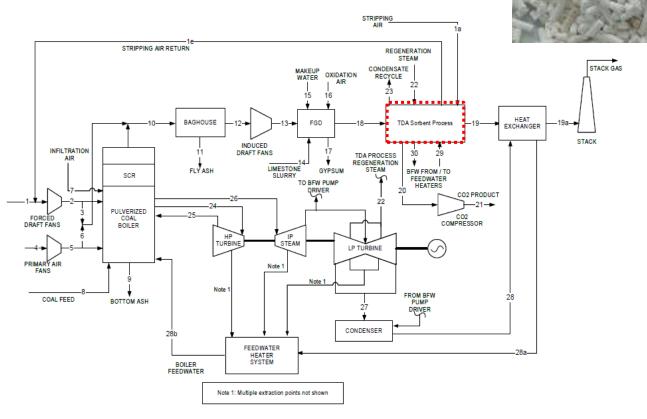
Dr. Jeannine Elliott and Dr. Fei Yi

August 28, 2019

Project Scope

DoE Project DE-FE0012870 Funding - Total Project \$6,480,377

- Budget Period 1: Optimization & Design
- Budget Period 2: Construction & Installation
 - Pilot Unit Construction
 - Sorbent Production Scale-up and Quality Assurance
 - Pilot Unit Installation



Budget Period 3: Shakedown & Operation

Project Objectives

 The objective is to develop solid sorbent capture technology that captures CO₂ at less than \$40 per tonne not including TS&M.

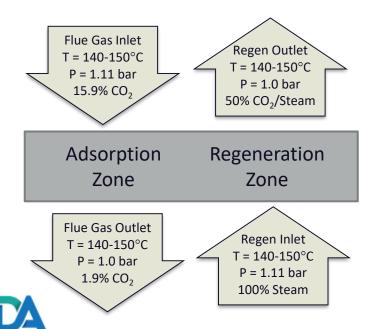
Project Overview

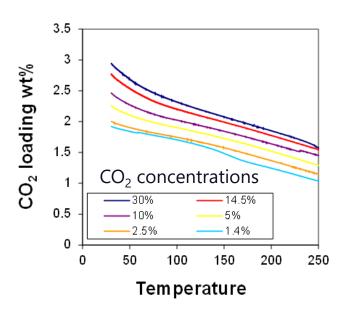
Goals of NCCC testing

- Demonstrate alkalized alumina sorbent technology under realistic conditions at 0.5 MW_e (~10 tpd CO₂) scale on coal flue gas) to collect data necessary for scale up to next level plant.
- Demonstrate sorbent technology on coal fuel gas and diluted flue gas to simulate NG flue gas

Planned Testing

1.5 month parametric testing and
 2 months steady state testing

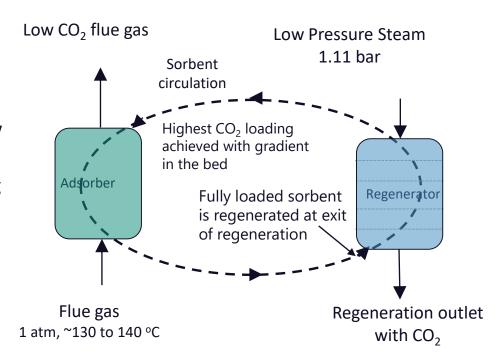

National Carbon Capture Center located at the E.C. Gaston power plant (Wilsonville, Alabama)



Technical Background

TDA Research has developed:

- A low-cost, alkalized alumina adsorbent
- A CO₂ capture process designed specifically for this sorbent
- A unique CO₂ capture process to run adsorption and regeneration at near isothermal conditions



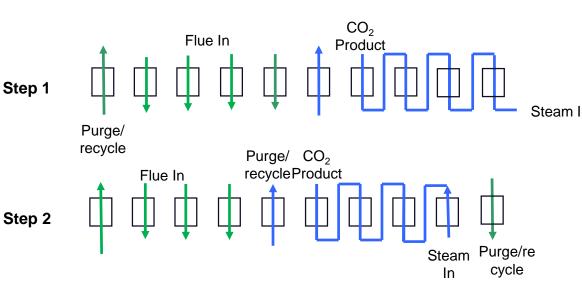
Heat of adsorption ranges from 3 kcal/mole at higher CO₂ concentrations of 10-14%, to 10.3 kcal/mole at CO₂ concentrations of 1-5%

Adsorbents

Adsorbents loosely bind CO₂ to the surface

- Regeneration is fast and with low desorption energy requirement
- High concentration of CO₂ during desorption
- Adsorbents operate along a concentration gradient

 They absorb more CO₂ when the concentration is higher than when the concentration is lower


Optimum bed design is counter-flow

 Maximizes the loading on the adsorbent by having the adsorbent contact the gas stream with the highest CO₂ concentration at the end of its reactor residence time

Simulated Moving Bed Process

- Multiple Fixed Bed Contactor
 - Provides counter-flow contact between the solids and gases
- Beds cycle between adsorption and regeneration functions
- Gas flows in parallel through adsorption beds and in series across regeneration beds

Advantages over moving bed

- Moving bed had expensive conveyors, although the beds would be smaller
- Selected Multiple fixed bed design
 - ✓ Basic duct work
 - ✓ Low cost construction
 - ✓ Simple bed design
 - ✓ Eliminates parasitic power needed to move the sorbent
- Lower overall cost than moving beds

Bench-scale Testing at TDA

- Process design optimized
- Expanded from 8 bed to 10 bed process demonstrated in benchscale unit at TDA
- System also used for sorbent evaluation
- Multiple patents on the process: US9539540B2, US9446343B2 US9504955B2, US9527029B2

Process design demonstrated in benchscale system at TDA

Schedule and Milestones

Completed Milestones

- Process Flow Pattern Optimization
- System Design and Engineering
- Pilot Unit Construction
- Sorbent Production
- Pilot Unit Installation and Shakedown

Next Milestones

- 1.5 Months of Parametric Testing (In Progress)
- 2 Months of Steady State Testing
- Update Techno Economics Analysis

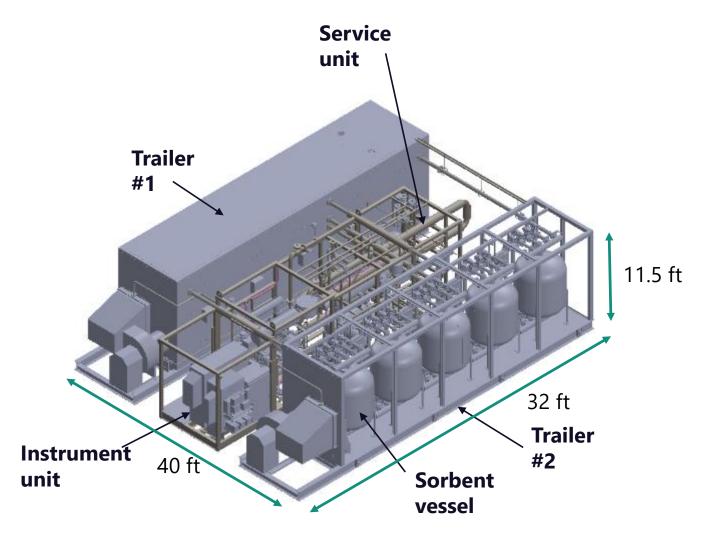
Test Plan

- The primary objective of the pilot unit field tests is to demonstrate the technical merits of this sorbent-based CO₂ capture process at 5000 lb/hr for 0.5 MW
- Optimize cycle parameters to achieve the following goals:
 - Minimize the amount of regeneration steam used
 - Maximize the flue gas flow rate through the TDA system
- We will also evaluate the process under both coal derived flue gas and diluted flue gas (simulated natural gas conditions)
- Demonstrate cyclic operation at steady state.
- Evaluation at 90% capture and optimization at lower capture targets


Pilot Unit System 0.5 MW Demonstration

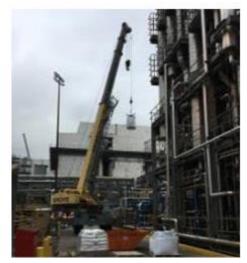
2 Sorbent Bed Trailers

- Sorbent trailers house 10 sorbent beds (5 in each trailer) and manifold piping
- Each trailer is insulated and heated to provide an isothermal environment


Service Unit/Instrument Trailer

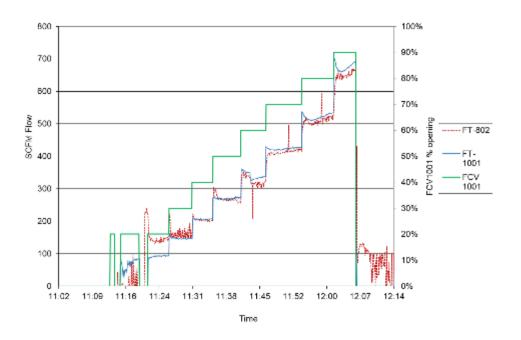
- Pressure, temperature and flow control for process gases
- Each process gas routed to both sorbent bed trailers
- Houses the control system and all electrical components for power allocation
- A full suite of on-board analyzers to evaluate system performance

Pilot Unit Skids

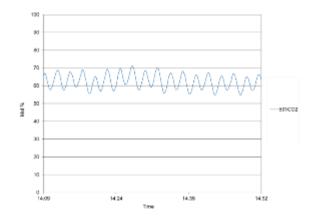


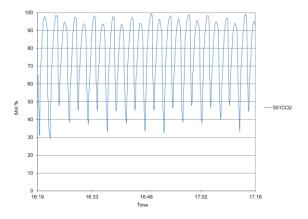
Sorbent Loading

- Scaled up sorbent had good initial performance but unexpected (poor) performance in extended cycling tests
- The sorbent had to be reprocessed by the manufacturer at their cost
- Because of loss in reprocessing, two beds were filled with modified commercial sorbent material
- Sorbent was replaced in one bed due to being flooded with steam in shakedown
- Expect variation in the sorbent between beds
- Beds are being bench-marked



Shakedown Activities


- Flow meters were checked and steam flow meter issue was solved.
- Pneumatic valves installed to control the flow to the reactors, and all were confirmed to operate as needed.



Shakedown Activities (cont)

- Humidity sensor operation was successfully demonstrated
- CO₂ and O₂ analyzers calibrated
- Gas sampling rate optimized to get accurate real time concentration
- Added another chiller to the sampling line

0.5 L/min sampling rate

1.0 L/min sampling rate

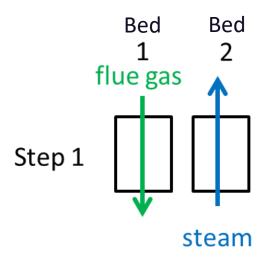
Shakedown Activities (cont)

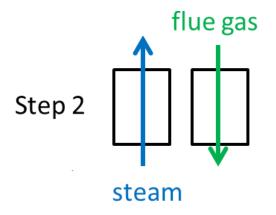
- All control valves were checked and function properly.
- Reactor cycling program tested.
- Functionality of each flow process demonstrated
- Two sorbent trailers were successfully kept hot by the automated system overnight without operator present.

Sorbent Beds brought Online

- Fresh sorbent adsorbs water when brought online
 - Adsorption process is exothermic
- To control temperature exotherm in large beds, sorbent is conditioned to operation feeds
- Beds are hydrated in staged process
- Procedure developed was demonstrated to work well and control initial temperature

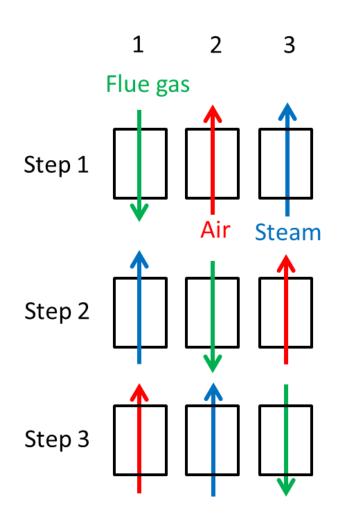
System Operation

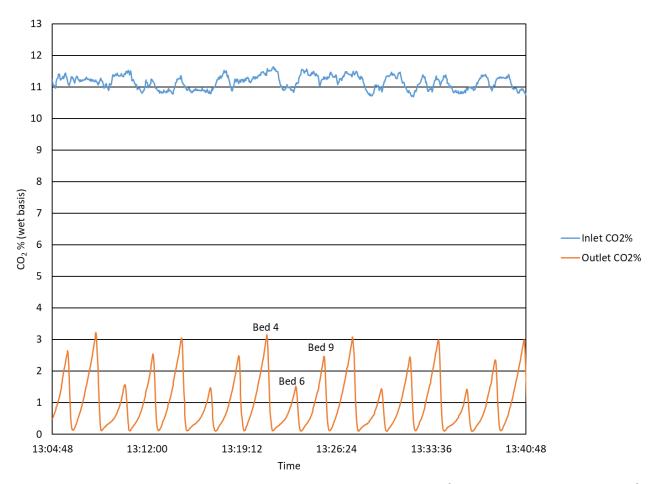

- Process operations demonstrated sequentially
- Simple batch mode operation run with each beds in pairs
 - One bed on adsorption and one bed on regeneration
- Additional process step features added one at a time



2-Bed Test

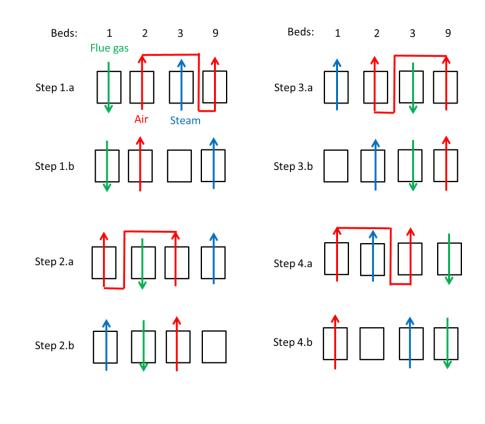
- Initial tests conducted with 2-bed operation
- Flue gas flowrate equivalent to 0.3 MW (60% of design flow) with only 20% of the sorbent
- Achieved 75% capture and showed good functionality of the system hardware
- Dilution of flue gas to simulated NG flue gas also tested in 2-bed cycle




3-Bed Test

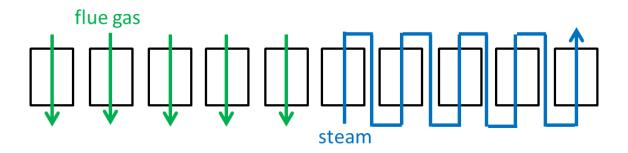
- Strip step is designed to further regenerate the sorbent.
- Flue gas of equivalent to 0.3
 MW (60% of design flow) was used in the comparison.
- The CO₂ capture rate increased from 75% for 2-bed test to 89% for 3-bed test.

3- Bed Test

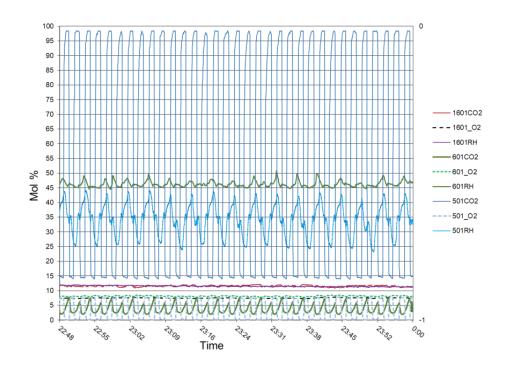


Best capture rate with Bed 6 (>90% Capture).

4-Bed Test


- Steam saver step, transferring steam from a fully regenerated bed to a bed just finished adsorption, is designed to reduce steam consumption.
- Flue gas of equivalent to 0.3 MW (60% of design flow) was used in the comparison.
- The same CO₂ capture rate as 3-bed test was achieved for 4-bed test with 16% less steam (on a per mole of CO₂ captured).

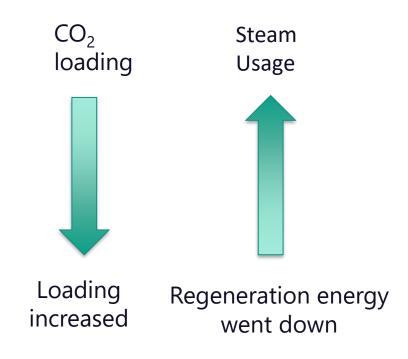
5+5 Test


- 5 beds are used in adsorption and gas flows in parallel.
- 5 beds are used in regeneration and gas flows in series.
- Flue gas of equivalent to 0.5 MW (100% of design flow) was tested.
- 84% CO₂ capture rate was achieved under 5+5 basic cycle.
- Individual bed performance varied.

Overnight Option

- Stable operation demonstrated overnight without operator present
- Two bed cyclic operation tested
- No issues

Full Process Scheme Testing


- Testing with full process flow pattern
- Optimized cycles has several features to benefit performance

Feature	Advantage	Benefit
10 beds	Additional regeneration stages	 Additional stripping for same steam usage Beds needed for transition steps
Purge	Additional regeneration	Higher capture rateLess steam usage
Steam saver with controlled flow and timing	Steam recycled back to regeneration side to rehydrate bed can be optimized in controlled manner	 Steam usage decreased Steam saver can tuned for maximize benefit

Comparison of Process Cycles at Pilot Unit 10 Bed - 0.5 MW

Flow pattern	Capture rate %
5 ads + 5 reg	54%
With Purge	82%
With Purge & Steam saver	92%

Optimized process significantly increases capture and decreases steam usage

Summary

- TDA's CO₂ capture system uses an alkalized alumina sorbent and a process designed specifically for this sorbent.
- Pilot Unit installed at NCCC and comprehensive hardware and instrumentation shakedown completed
- A procedure was developed and instituted for start-up of the sorbent beds. This procedure controls the temperature rise during initial hydration of the sorbent
- The operation of our different sequences of flow operation were demonstrated. Each was tested individually..
 - Capture rate increased from the 70% range up to as high as 93% with additional cycle features in 3 bed tests.

Summary (cont)

- To simulate natural gas flue gas, which contains less CO₂ than coal fired flue gas, we designed our apparatus the ability to dilute the coal flue gas with air. The system ran with simulated natural flue gas without issue.
- TDA successfully ran an automated overnight experiment with no issues.
- All ten beds were run in a simple cycle with five beds on adsorption and five beds on regeneration (5+5 cycle). This test was run with 0.5 MW equivalent flue gas.
- Features of full flow pattern demonstrated in 0.5 MW test
 - With same regeneration steam, adsorption capture increased from 54% to 92%

Acknowledgements

- Project funding provided under DoE Contract # DE-FE0012870
- DoE: Andy O'Palko and Lynn Brickett
- NCCC team

