Real-time in-situ CO₂ Monitoring (RICO₂M) Network for Sensitive Subsurface Areas in CCS

Project Number DE-FE0012706

Jesús Delgado Alonso, Ph.D. Intelligent Optical Systems, Inc.

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage and Oil and Natural Gas Technologies Review Meeting Mastering the Subsurface through Technology Innovation Partnerships, and Collaboration August 13-16, 2018

Outline

- Project Overview
- Technical Status
 - Technology
 - Four years of sensor development, from demonstration in the laboratory, to validation in the field, and demonstration at a CCS site
- Project Summary
 - Accomplishments to date
 - Future work
- Appendix
- Acknowledgments

Project Overview – Goals and Objectives

• **Phase I Objective:** Develop a multi-parameter system for highly sensitive and accurate detection of CO₂ in groundwater

Sensor development and demonstration in the laboratory.

- Phase II Objectives:
 - Perform system deployment and demonstration in the field
 - Technology commercial demonstration at a CCS site

Validation in the field, and commercial demonstration.

Distributed Intrinsic Fiber Optic Chemical Sensors

Unique Characteristics

- The entire length of the fiber is a sensor
- Direct detection of dissolved CO₂
- A single cable may include CO₂, pH, salinity, and temperature sensors.

- An optical fiber coated with a polymer cladding containing a colorimetric indicator, which absorbs light at a particular wavelength.
- A light source is placed at one end of the fiber and a photodetector at the other end, and light transmission is measured.

- The coating color varies with the analyte (pH, CO₂...)
- The light transmitted through the fiber at wavelengths absorbed by the indicator varies with the concentration of analyte (pH, CO₂...).

- The coating color varies with the analyte (pH, CO₂...)
- The light transmitted through the fiber at wavelengths absorbed by the indicator varies with the concentration of analyte (pH, CO₂...).

Four Years of Sensor Development The Demonstration in the lab

Sensor Materials: Cladding material coated onto glass slides

Covalent immobilization by cross linking with vinyl groups in the polymer.

Fiber Optic Sensor: Glass-core fiber coated with sensitive materials

Four Years of Sensor Development To Demonstration in the lab

Fiber Optic Sensor: Glass-core fiber coated with sensitive materials

- Glass-core selection
- Core pre-treatment and activation
- Coating process optimization time, temperature, speed, thickness...
- Cladding material reformulation
- Testing

Fiber Optic Sensor for pH: Analytical characterization

Basic Sensor Characteristics

Measurement range: 5 to 8.5 pH Resolution (precision): 0.04 at 7 pH Temperature range: 5°C to 30°C Temperature compensation: 1.4% / °C

Four Years of Sensor Development To Demonstration in the lab

Fiber Optic Sensor for CO₂: Analytical characterization

- Testing
- Cladding material reformulation
- Fiber fabrication protocol review

Basic Sensor Characteristics

Measurement range: 0 to 1,500 mg/L Resolution (precision): ±5% (0 to 100 mg/L); ±10% (100 to 1,500 mg/L) Temperature range: 5°C to 35°C Pressure range: 15 to 2,000 psi Salinity Range: 0 to 35% NaCl pH range: 2 to 14 pH

Demonstration in the lab

Instrument Development •

- High level design
- Detailed hardware and software design

Dual Photodetector System

Four Years of Sensor Development To Demonstration in the lab

Instrument Development

Optical module design and fabrication

Demonstrator

First Generation

- System integration
- Testing
- Design review

Second Generation Series fabrication

Sensor Probe Fabrication: Protection for fiber sensor

- Mechanical design and assembly
- Calibration, storage, shipping, installation
- Is it practical? Fiber sensor design review.

Sensor Probe Fabrication: Fiber sensor design review

Multi-well optical fiber

Wells filled with dye-doped polymer

- Simplifies probe fabrication = lower cost
- Facilitates calibration, storage, and shipment
- Similar performance

System Assembly for Field Operation

First Generation

RICO2M v2.0 PN003

Second Generation

RICO2M v3.0 PN005

Chassis integrates temperature control module.

Validation in the field

Data Storage and Remote Communication

Control (California)

System Deployment and Data Collection

SYSTEMS

Sensor 1 at BFL2

1.7 Compensated Signal 1.6 1.5 1.4 1.3 1.2 1.1 Gas Release Tests 10/9/2016 10/10/2016 10/11/2016 10/12/2016 10/13/2010 10/14/2010 10/15/2016 10/16/2016 1.7 Compensated Signal 1.6 1.5 1.4 1.3 1.2 1.1 10/16/2016 10/17/2016 10/18/2016 10/19/2016 10/20/2016 10/21/2016 10/22/2016 10/23/201 1.7 Compensated Signal 1.6 1.5 1.4 1.3 1.2 Gas Release Tests 1.1 10/23/2016 10/24/2016 10/25/2016 10/26/2016 10/27/2016 10/28/2016 10/29/2016 10/30/2016

Sensor 2 at BFL2

Validation in the field

25

Sensor 1 at BFL2

Sensor 2 at BFL2

- Excellent performance detecting small and large gas leaks reaching the aquifer
- Limited accuracy in monitoring CO₂ concentration over time.

Four Years of Sensor Development Demonstration at QUEST

RICO2M System

- The RICO2M system must be **capable of detecting CO₂ leaks in groundwater with high reliability**, with emphasis on no false negatives, and minimal false positives.
- The final objective will be to have a system capable of detecting any leak of gas reaching the aquifer and reporting such an event in real time, which would be followed by water analysis by means of established methods to confirm and quantify the effect on the water chemistry.

Four Years of Sensor Development[™] Demonstration at QUEST

Four Years of Sensor Development Demonstration at QUEST

Adapt instrumentation for installation at QUEST facilities

Fabricate series of distribution cables and probes

	Input Connec tor	Connec chan		Chan nel Out	Power (μW) λ = 850 nm	Power (µW) λ = 1300 nm			
	SMA	A01	LC	B01	78.3	93.6			
[SMA	A02	LC	B02	91.5	112.0			
	SMA	A03	LC	B03	105.2	121.5			
	SMA	A04	LC	B04	100.2	120.9			
[SMA	A05	LC	B05	78.0	96.1			
	SMA	A06	LC	B06	93.1	112.7			
[SMA	A07	LC	B07	89.7	104.8			
	SMA	A08	LC	B08	109.8	128.0			

Input Connec tor	Chan nel In	Output Connec tor	Chan nel Out	Power (μW) λ = 850 nm	Power (μW) λ = 1300 nm			
SMA	A01	LC	B01	158	181			
SMA	A02	LC	B02	165	185			
SMA	A03	LC	B03	163	182			
SMA	A04	LC	B04	158	184			
SMA	A05	LC	B05	159	180			
SMA	A06	LC	B06	145	164			
SMA	SMA A07		B07	154	173			
SMA	A08	LC	B08	157	176			

Input Connec tor	Chan nel In	Output Connec tor	Chan nel Out	Power (μW) λ = 850 nm	Power (μW) λ = 1300 nm				
SMA	SMA A01		B01	147.2	165.1 172.0				
SMA A02 SMA A03		LC	B02	153.9					
		LC	B03 B04	144.8	158.5 172.7				
SMA	SMA A04			146.3					
SMA	A05	LC	B05	152.3	173.8				
SMA	A06	LC	B06	144.7	163.9				
SMA	SMA A07		B07	149.2	167.8				
SMA A08		LC	B08	150.1	171.9				

Four Years of Sensor Development ™ Demonstration at QUEST

Generate documentation and obtain approval

- Subcontract agreements
- User manual
- Installation plan and protocol: onsite quality control
- Maintenance plan and protocol

Project Summary – Accomplishments to Date

- Developed the RICO2M system, and validated its performance in controlled field studies.
- Established the capability of the RICO2M system to detect large and small leaks of CO₂ before they reach groundwater resources.
- Evolved demonstrators to prototypes, and prototypes to a first series of instrumentation for commercial demonstration.
- Generated the required documentation to perform system demonstration at a QUEST.

Project Summary – Future Work

Next steps – demonstrate the technology developed under the RICO2M project for groundwater monitoring at a CCS site, and compare performance to off-the-shelf instrumentation and current protocols.

Acknowledgments

NETL Department of Energy

Joshua Hull

Synergy Opportunities

The project will develop a sensor network based on distributed fiber optic sensors for geochemical parameter monitoring in the subsurface.

The system will be capable of covering large areas and measuring very low concentrations of CO_2 with high resolution, detecting small changes from background concentrations in sensitive areas.

This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO_2 storage permanence (Goal).

Appendix

- Benefit to the Program
- Project Overview
- Organization Chart
- Project Schedule
- Acknowledgments

Benefit to the Program

- Carbon Storage Program goal being addressed:
 - Develop and validate technologies to ensure 99% storage permanence.
- Benefits Statement:
 - The project will develop a sensor network based on distributed fiber optic sensors for in-situ, real-time monitoring of geochemical parameters in groundwater. The system will be capable of covering large areas and measuring very low concentrations of CO₂ with high resolution, detecting small changes from background concentrations in sensitive areas. This technology contributes to the Carbon Storage Program's effort of ensuring 99% CO₂ storage permanence (Goal).

Benefit to the Program

- Monitoring dissolved carbon dioxide is the most direct way to detect and quantify a leak reaching underground sources of drinking water.
- Current methods for detecting CO₂ leakage in groundwater are adapted from traditional groundwater quality studies – water samples are collected periodically and analyzed in the laboratory.
 - This is not cost-effective for long-term monitoring of large areas
 - De-gassing during the sampling process can degrade accuracy
 - Very poor spatial coverage
 - Intermittent monitoring can miss changes in the geochemical parameters of groundwater

Monitoring groundwater in-situ and in real time.

Project Overview – Goals and Objectives

• **Phase I Objective:** Develop a multi-parameter system for highly sensitive and accurate detection of CO₂ in groundwater

Sensor development and demonstration in the laboratory.

- Phase II Objectives:
 - Perform system deployment and demonstration in the field
 - Technology commercial demonstration at a CCS site

Validation in the field, and commercial demonstration.

Organization Chart

Project Schedule

Gantt Chart related to technology demonstration at a CCS site

				Today												
			3rd Quarter	4th Quarter	1st Quarter	2	nd Quarter	3rd Quarter	41	h Quarter	1	st Quarter		2nd Quarter		
		Start 1 4/3/17	·			Add tas	sks with dates to the	e timeline								Finish Thu 6/20/19
	MO	14/3/17														
	0	Task		2nd Quarter Apr May Ju		4th Quarter Oct Nov	1st Quarter Dec Jan Feb	2nd Quarter Mar Apr Ma	3rd Quai y Jun Jul	ter Aug Sep	4th Quarter Oct Nov	Dec Jar	Quarter n Feb	2nd Quarte Mar Apr I	r ∕lay jun	3rd Quarter Jul Ar
1	•	Mode •		Apr May Ju	n Jul Aug Sep	Οα Νον	Dec Jan Feb	Mar Apr Ma	y Jun Jul	Aug Sep	Οα Νον	Dec Jai	n Feb	Mar Apr r	nay Jun	Jul Au
2	_	-	Adapt electric unit and validate at the CCS					-								
2		->	Adapt electric unit and validate at the CCS site													
3		-	Evaluate electronic unit in the laboratory.				h									
4			Evaluate electronic unit at CCS site				†									
5			Fabricate a series of RICO2M units				+	h								
6			Develop leak detection algorithms	i												
7			Design and code leak detection algorithms				-h									
8			Demonstrate leak detection algorithms				+									
9			Validate reliability in the field				4	-								
10			Deploy and evaluate first series of RICO2M													
11		*	Installation planning.													
12	•		Sensor system installation					+	The second se							
13			Maintenance and validation						*							
14			Data analysis													
15			 Fabricate a series of advanced RICO2M units 								I					
16			Fabricate final version of RICO2M monitors								4					
17			 Deploy and evaluate advanced RICO2M units 					Γ						1		
18		*	Installation planning													
19			Sensor system installation									*				
20			Maintenance and validation									*		h		
21			Data analysis											i		
22			Post demonstration support											9		
23	•		Project End									+			•	6/20