NASA MIRO Center for Space Exploration and Technology Research The University of Texas at El Paso

Technology Demonstration of a High-Pressure Swirl Oxy-Coal Combustor

Award No: DE-FE0029113

Presenter: Jad G. Aboud Graduate Research Associate

Principal Investigator: Ahsan Choudhuri, PhD Associate Vice President and Director

Collaborator: Hwanho KIM American Air Liquide

A Giant Leap Forward volt.utep.edu/cSETR

Oxy-Coal Combustor

♦ Grant No: > DE-FE-0029113

♦Project Title:

> Technology Demonstration of a High-Pressure Swirl Oxy-Coal Combustor

Investigators:

Ahsan Choudhuri and Norman Love
 The University of Texas at El Paso
 Chendhil Periasamy
 American Air Liquide

♦Project Period:

> 10/01/2016 (01/01/2017)-09/30/2019 (12/31/2019)

♦Project Manager:

➤ Mark Freeman

- Introduction and Background
- *Objective and Timeline
- Cycle Analysis
- Combustor Design
- Secondary Burner & Ignitor
- *Injector Design
- Injector Water Test
- Exhaust System Concept

Introduction & Background

Pressurized Oxy-Coal Combustion

*Pressurized oxy-coal combustion systems

- Improve efficiency by recovering latent heat of the steam in the flue gas
 Achieve 90% CO2 capture ^[1]
- Smaller system size and capital cost due to the reduction of flue gas at higher pressure

Swirl burners^[2]

Widely used combustion devices
 Have superior flame holding
 Higher conversion rate
 Low pollutant emission characteristics

Concept design for pintle injector

cSETR swirl injector element using additive manufacturing

Proposed Cycles

- ThermoEnergy Integrated Power System (TIPS) Cycle ^[1,2]:
 - Proposed and studied by CANMET and Babcock
 Power
 - Contain:
 - Flue Gas Condenser (FGC)
 - Radiative and convective heat exchangers
 - Suggested pressure with the benefit of latent heat recovery:
 - o CANMET- 80 bar
 - o Babcock Power- 20.7 bar

✤ ENEL Cycle ^[1,2]:

- Based on combustion process patented by ITEA and analyzed by MIT
- No use of radiant heat exchanger
- Most of the latent heat can be recovered at 11 bar

Objectives & Timeline

*Objective 1: Systems Configuration Analysis of a 1 MW_{th} Pressurized Oxy-Coal Swirl Combustor

550 MW_e TIPS and ENEL pressurized oxy-coal systems with CO2 recirculation modeled with ASPEN PLUS[®]

*Objective 2: Design and Construction of a 1 MW_{th} Pressurized Oxy-Coal Swirl Combustor

- Detailed structural analysis
- Flow and combustion optimizations
- > Manufacturing (conventional and advanced additive manufacturing)

***Objective 3: Test of the Combustor Performance and Operability**

- > Flame stability analysis and flame temperature and heat flux measurements at range of pressure
- Swirl number (ratio of axial flux of the angular momentum to the axial flux of axial momentum)
- > Flue gas analysis will be performed to produce fundamental combustion information
 - Effects of pressure

• Stoichiometric ratio on burnout

• Swirl number

• Pollutant emissions

Timeline

Cycle Analysis

* ENEL

- Main sections:

 Upstream
 Heat Exchanger
 Carbon Capture Unit
- Has convective heat exchanger
- Turbomachinery must operate up to 10 bar pressure
- Increased efficiency

***TIPS**

- Main sections:

 Upstream
 Heat Exchanger
 Carbon Capture Unit

 Has radiative heat exchanger in
- addition to convective heat exchanger
- Turbomachinery has to operate up to 80 bar pressure

Cycle Analysis

Cycle Simulation Parameters:		Simulations Completed:		
Input Parameters		Case	Recirculation Ratio	
Element	Mass Flow Rate [kg/s]	1	20%	
Coal	18.87	2	35%	
Water	16.15	3	50%	
Oxygen	50	4	65%	
Equivalence Ratio: 0.95		5	75%	
Total Thermal Input: 550 MW				

Efficiency

◆Efficiency Ranges
>ENEL = 26-38%
>TIPS = 32-35%

- ENEL increases the burning rate of char and the heat transfer rates in the convective sections of the heat transfer equipment^[1]
- ENEL reduces the energy penalties

➤Turbomachinery

Recirculation Ratio (%)

Recirculation vs. Efficiency

Source: [1] Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor Jongsup Hong a, Gunaranjan Chaudhry a, J.G. Brisson a, Randall Field b, Marco Gazzino c, Ahmed F. Ghoniem a,* [2] Chowdhury, Mehrin, et al. "Thermodynamic Analysis of ENEL and TIPS Oxy-Coal Power Cycles." 2018 AIAA Aerospace Sciences Meeting, no. January, 2018, pp. 1–11, doi:10.2514/6.2018-2254.

Combustor Design

Combustor Design

Test Stand

Secondary Burner & Igniter

Design Methodology (Igniter)

Secondary Burner

Two secondary burners

≻125kW firing input each

*Co-axial shear injector

➤Fuel centered

Mass Flow Rate	Value	Unit
Methane	2.5	g/s
Oxygen	10	g/s
Total	12.5	g/s

Velocities	Value	Unit
Methane	23.14	m/s
Oxygen	4.20	m/s
Velocity Ratio	5.51	N/A
Momentum Flux Ratio	15.38	N/A

Optical Port

Sensor Port

Flanges

Main Body

Eyebolt Lifting Hooks

Operation

Pressurization

Depressurization

Injector Design

***Benefits**

Utilized for liquid injection
 Wide range of firing input
 90% of burning efficiency

***Pintle Injector History**

- Developed in mid 1950s^[1]
- Atomization and mixing propellants in rocket engines
- ▶ Performance in range of 96-99%^[2]

*Design Criteria

Coal slurry as fuel (Radially)
 Gaseous oxygen as oxidizer (Axially)

* Advantages

Variety of firing input
Range of spray angle
Maintenance

Sketch of bipropellant pintle injector

*Coal Slurry

>The coal powder mixed with water

The percentage of solids concentration is $C_w = 75\%$ by weight ^{[1]-[2]}

> The maximum powder size is $200 \ \mu m$

*****Properties

The density of slurry $\rho_{sl} = \frac{1}{7}$

100			
(C_W)	$\left(\frac{1-C_W}{W}\right)$		
$\left(\rho_{co} \right)$	$T(\rho_w)$		

100

The oxygen density is obtained at 11 bar

Name	Value	Unit
Firing input	250	kW
Lower Heating Value	27.5	MJ/Kg
O/F stochiometric	2.56	N/A

Density	Value	Unit
Oxygen	14.3	kg/m³
Coal	850	kg/m³
Water	998.6	kg/m³
Slurry	882.8	kg/m³

✤Flow rates

Coal mass flowrate, $m_{coal} = \frac{Firing Input}{lower heating value}$ Oxygen mass flowrate, $\dot{m}oxygen = (\dot{m})coal \times \left(\frac{0}{F}\right)_{st}$ \circ Slurry mass flow rate $m_{slurry} = \frac{100*m_{coal}}{Cm}$

Coal Powder

Mass Flow Rate	Value	Unit
Coal	9.1	g/s
Oxygen	23.3	g/s
Slurry	12.1	g/s
Total	35.4	g/s

Injector Water Test

Shadow Sizing

♦An optical method based on:

High resolution imagingHigh illumination

♦Used for visualizing:

➢Particles, droplets, and structures

Advantages

>Better identification of droplets and flow patterns

Ideal for water testing

Measure droplets

Monitor atomization

DynamicStudio controls camera settings and acquires images

Shadow sizing of droplets analyzed by same program

Water Set-Up

Water Set-Up

Water Set-Up Results

Run	1	2	3	4	5
Theoretical Angle (Degree)	90	88	87	86	85
Water Flowrate (g/s)	37.6	37.6	37.6	37.6	37.6
Nitrogen Flowrate (g/s)	0	7.6	14.7	19.9	26.3
Experimental Angle (Degree)	90	89	85	73	80
error(%)	0.0	-1.1	2.4	17.8	6.3

Exhaust Design Concept

Exhaust Design Concept

- A small pressure vessel is attached with flanges
- Ash removal

Water added with sprinklers
 Ash drained and collected at the bottom

- ◆Modular design for the ash collection
 >Maintenance
- ◆Pressurized with chocked flow ,
 >Valve

Schematic of exhaust system

Team Members

Ana Rios

Mehrin Chowdhury

Jad G. Aboud (Team Lead) Ph.D. Student Mechanical Engineering

Ph.D. Student Mechanical Engineering

Ph.D. Student Mechanical Engineering **Mohieminul** Khan

Ph.D. Student Mechanical Engineering

Contact Information

Office Location

The University of Texas at El Paso Metallurgy Building Room M-305 500 W. University Ave. El Paso, TX 79968-0521

Contact information

Tel: (915) 747-8252 Fax: (915) 747-5549 Email: csetr@utep.edu f facebook.com/MIROcSETR

twitter.com/UTEP_cSETR

