Engineering-scale Demonstration of Mixed-Salt Process (MSP) for CO$_2$ Capture (FE0031588)

Indira S. Jayaweera
Sr. Staff Scientist and Sr. Program Manager
Advanced Technology and Systems Division
SRI International

August 13-17, 2018 • Omni William Penn Hotel • Pittsburgh, Pennsylvania
Technology Background
Mixed-salt Process (MSP)

How it works:
Selected composition of potassium carbonate and ammonium salts
- Overall heat of reaction 35 to 60 kJ/mol (tunable)
Absorber operation at 20° - 40°C at 1 atm with 30-40 wt.% mixture of salts
Regenerator operation at 120° - 160°C at 10-20 atm
- Produces high-pressure CO₂ stream

K₂CO₃-NH₃-CO₂-H₂O system

High CO₂ cycling capacity

Process Highlights:
- Reduced ammonia emissions
- Enhanced efficiency
- Reduced reboiler duty
- Reduced CO₂ compression energy

A SIGNIFICANT PARASITIC POWER REDUCTION COMPARED TO MEA!
MSP Summary and Benefits

Process Summary

- Uses inexpensive, industrially available material (potassium and ammonium salts)
- No chemical degradation
- Has the potential for easy permitting in many localities
- Uses known process engineering
- Accelerated development possible

Demonstrated Benefits (by testing and/or modeling)

- Enhanced CO$_2$ capture efficiency
- High CO$_2$-loading capacity
- High-pressure release of CO$_2$ (10-20 bar)
- Reduced reboiler energy consumption (~ 2 MJ/kg-CO$_2$)
- Reduced auxiliary electricity loads
Recently Completed Project (FE0012959)
Large Bench-scale Mixed-salt System at SRI
0.25 t-CO₂/day capacity - operational since January 2016

Absorbers

Regenerator pictures from different angles

System built under FE0012959

Continuous smooth operation of the integrated system over 1.5 years of operation

A : Rich solution inlet locations.
B : Discharge location for high NH₃/K ratio solution
C : Discharge location for low NH₃/K ratio solution
D : Heat exchangers (Cold rich ↔ Hot lean)
Data from Integrated System Testing in 2016

Excellent Performance

Observed 90% capture efficiency and regeneration with cyclic loading of ~0.7 mole of CO$_2$/mole of ammonia at 10 bar.

Alkalinity of rich and lean solutions circulating in the integrated system

Results from FE0012959

Absorber: 20-35°C
Regenerator stage 1: 140°C
Regenerator stage 2: 160°C
L/G = 2 to 6 (kg/kg)
Solvent composition: 5 to 8 m
Techno-Economic Data

Comparison Between Mixed-salt Technology and DOE Baseline Case

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal feed rate [kg/hr]</td>
<td>179193</td>
<td>224791</td>
<td>220576</td>
</tr>
<tr>
<td>CO2 removal</td>
<td>n/a</td>
<td>Cansolv</td>
<td>Mixed-Salt Technology</td>
</tr>
<tr>
<td>CO2 purification</td>
<td>n/a</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Sulfur removal</td>
<td>FGD</td>
<td>FGD</td>
<td>FGD</td>
</tr>
</tbody>
</table>

Performance and Economic Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 capture</td>
<td>n/a</td>
<td>90.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>CO2 purity</td>
<td>n/a</td>
<td>>99%</td>
<td>>99%</td>
</tr>
<tr>
<td>H2 recovery</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>HHV plant efficiency</td>
<td>40.7%</td>
<td>32.5%</td>
<td>32.7%</td>
</tr>
<tr>
<td>COE w/o T&S [$/MWh]</td>
<td>82.3</td>
<td>133.2</td>
<td>117.5</td>
</tr>
<tr>
<td>COE w/ T&S [$/MWh]</td>
<td>82.3</td>
<td>142.8</td>
<td>127.0</td>
</tr>
<tr>
<td>Increase in COE comparing the case w/o capture with the case w/ CC&T&S</td>
<td>0%</td>
<td>88%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Reference: NETL, «Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3,» pp. 137-166; 2015

Process Modeling: OLI, IHI, and POLIMI

- Cyclic loading: 0.18 to 0.58; Reboiler duty: 2.0 (OLI); 2.3 MJ/kg-CO2 (POLIMI); 2.1 to 2.3 MJ/kg-CO2 (IHI-measured)
- Ammonia emission < 10 ppm
- Cost of CO₂ Capture at <$40/t CO₂; Cost Of CO₂ avoided (excluding T&S) ~ $51/t CO₂
- Cost analysis was performed by POLIMI
Current Project (FE0031588)
Project Budget, Team, and Work Organization

DE-FE0031588
Two Budget Periods (BP1 and BP2)
BP1: 7/12/2018 to 10/31/2018
BP1 DOE Funding: $566,135
TCM: In-kind cost-share

Project Manager: Mr. Andrew Jones, NETL
Prime Contractor: SRI International
Project Team: US and International Partners

Work Organization

- SRI International
 - Technology provider
- Technology Center Mongstad (TCM), Norway
 - Host site and cost-share partner
- OLI Systems, USA
 - Process modeling (energy and mass balance)
- Aqueous Systems Aps, Denmark
 - Thermodynamic modeling
- POLIMI, Italy
 - Techno-economic analysis
BP1 Work Update

- Workshop at TCM on June 28, 29: Discussions on the program details, TCM requirements, TCM-CAP system P&IDs and modification requirements, and current status of the TCM-CAP system.
- TCM-CAP system inspection meeting at TCM (August 28, 29): Project progress evaluation and information exchange.

Task Overview

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering Scale Demonstration of MSP for CO2 Capture.</td>
</tr>
<tr>
<td>2</td>
<td>BP1: Host-Site Facility Assessment</td>
</tr>
<tr>
<td>3</td>
<td>Task 1.0 (BP1) - Project Management and Planning</td>
</tr>
<tr>
<td>4</td>
<td>Subtask 1.1 - Project Status Reporting and Briefing</td>
</tr>
<tr>
<td>5</td>
<td>Subtask 1.2 - Financial Management</td>
</tr>
<tr>
<td>6</td>
<td>Task 2.0 (BP1) - Detailed Investigation of the TCM-CAP Plant</td>
</tr>
<tr>
<td>7</td>
<td>Subtask 2.1 - Recommissioning Cost Assessment</td>
</tr>
<tr>
<td>8</td>
<td>Subtask 2.2 - Partnering Agreements</td>
</tr>
<tr>
<td>9</td>
<td>Subtask 2.3 - Update BP2 Scope of Work</td>
</tr>
<tr>
<td>10</td>
<td>DOE Project review and Decision to move to BP2</td>
</tr>
<tr>
<td>11</td>
<td>BP2 Mixed-Salt Testing at TCM</td>
</tr>
</tbody>
</table>

![Gantt Chart](chart.png)
BP2 Tasks

Task 1. Project Management

Task 2. CAP System Re-commissioning and Modification

Task 3. Dynamic Testing of MSP

Task 4. Steady-state Testing of MSP

Task 5. Process Economics, Technology Gap Analysis, and Technology Maturation Plan

Task 6. Environmental, Health & Safety Assessment

Task 7. Pilot Shutdown and Project Closure

The planned system inspection and modification period is about 12 - 18 months and the planned technology testing period is about 9 -12 months. BP2 Tasks will be finalized after completing the BP1 work.
Technology Maturation: MSP Developments

Small bench to mini pilot to large pilot

Ammonia technology development started at SRI in 2004

Chilled Ammonia Process (CAP)

- 2004
- 2006
- 2008-2016

GE Facility, Vaxjo

Mixed-salt Process (MSP)

- 2012
- 2014
- 2016
- 2013-2017

IHI Corp., Japan

· MSP Testing in TCM-CAP System (DOE-FE0031588)
· CAP Validation at TCM
· Transformational Technology Development
· Next Generation MSP

©2018 SRI International
Technology Maturation: Testing MSP at TCM and Beyond

- Prof Of Concept
- TD model and kinetic model
- Testing/Data collection
- Process reliability
- Model validation
- TEA
- Water management
- TEA validation
- Technology gap analysis for large scale applications
- Technology Readiness Analysis
- Pilot scale testing in TCM-CAP system
- Large bench/mini-pilot scale testing
- Lab and small bench scale testing

SRI has the patent coverage for MSP in US, Japan and Europe

SRI has the patent coverage for MSP in US, Japan and Europe

DOE-FE003158

IHI Funded

DOE Funded

Commercial Opportunities
Acknowledgements

NETL (DOE)

- Andrew Jones, Ted McMahon, Steven Mascaro, Jose Figueroa, Lynn Bricket, John Litynski and other NETL staff members

SRI Team

- Indira Jayaweera, Palitha Jayaweera, Elisabeth Perea, Regina Elmore, William Olsen, Marcy Berding, Chris Lantman, and Barbara Haydon

Host Site

- TCM (Bjørn-Erik Haugan, Jorunn Brigsten, Thilak Narayanadoss, Gerard Lombardo, and Kjetil Hantveit)

Other Collaborators and Contributors

- OLI Systems (Prodip Kondu and Andre Anderko)
- POLIMI (Gianluca Valenti and others)
- Stanford University (Adam Brant and Charles Kang)
- Aqueous (Kaj Thomsen)
- BHGE (Gianluca Difederico, and Olaf Stallmann)
- IHI Corporation (Mr. Shiko Nakamura, Mr. Okuno Shinya, Mr. Yasuro Yamanaka, Dr. Kubota Nabuhiko, and others)
Thank You

Contact:

Dr. Indira Jayaweera

indira.jayaweera@sri.com

1-650-859-4042

Disclaimer
This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.