Evaluation of amine-incorporated porous polymer networks (aPPNs) as sorbents for post combustion CO$_2$ capture

DOE AWARD NUMBER: DE-FE0026472
Research Team

• **Principle Investigator:** Dr. Hong-Cai “Joe” Zhou

• **Industrial partners:** Koray “Ray” Ozdemir (*framergy*)

• **Team leaders:** Jeremy Willman, Gregory Day

• **Team members:** Elizabeth Joseph, Hannah Drake, Xinyu Yang, Jialuo Li, Zachary Perry

• **Past Members:** Dr. Lanfang Zou, Dr. Mathieu Bosch, Dr. Xuan Wang, Dr. Yujia Sun, Dr. Ning Huang
• Introduction
 • Objectives
 • Porous Polymer Networks
 • PPN-151-DETA

• Sorbent Scale-up
 • Improving 250 g synthesis
 • Evaluation of Washing procedure
 • 1 kg reactor design and scale-up

• Remaining Tasks
Project Objectives

• A scalable highly-robust and highly-efficient sorbent that can be delivered and validated through lab-scale testing

• A sorbent that will be economically feasible to scale-up and use in commercial carbon capture processes

• An ideal sorbent for post-combustion CO\textsubscript{2} capture that will approach the goal of 90% CO\textsubscript{2} capture rate with 95% CO\textsubscript{2} purity at a cost of electricity 30% less than baseline capture approaches
Amine-decorated Porous Materials

• Porous Polymer Networks (PPNs)

[Chemical structures and formulas]

McDonald, T. M.; Long, J. R., Nature 2015, 519 (7543), 303-308.
Initial PPN Candidate Materials

Yang, X. et al., *Polymer*. 2017
PPN-151-DEnviarname

Cyanuric Acid (CA)

\[\text{Formaldehyde} + \text{Cyanuric Acid (CA)} \rightarrow \text{PPN-151} \]

\[\text{PPN-151} + \text{Diethylenetriamine (DETA)} \rightarrow \text{PPN-151-D伊拉}}

Conditions:

DMSO, 150°C, 72hr

References:

PPN-151 Porosity Measurements

N\textsubscript{2} Isotherm PPN-151-DETA

<table>
<thead>
<tr>
<th>BET SA (m2/g)</th>
<th>Pore Volume (cm3/g)</th>
<th>Average Pore Size (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>804</td>
<td>0.784</td>
<td>67.3</td>
</tr>
</tbody>
</table>

PPN-151-DETA BJH Pore Size Desorption
PPN-151-DETA Fixed-bed Testing Long-term Wet Cycling

PPN-151-DETA CO₂ wet gas cycling

CO₂ Adsorption (wt%) vs Cycle Number
Regenerative Energy Demand

- Heat of adsorption at 150 mbar CO₂ and 40°C:
 - PPN-151-DETA: 1.40 MJ/kg CO₂

- Heat capacity increases exponentially with higher temperatures

- Regenerative energy demand at 85°C
 - PPN-151-DETA: 1.8 MJ/kg CO₂

(Typical MEA process: 3.8 MJ/kg CO₂)
The team utilized framergy's 10 L jacketed solvothermal reactors to scale-up the sorbent synthesis to >250 g. ~250 g of the sorbent was produced.

Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Time</td>
<td>5 day</td>
</tr>
<tr>
<td>Headspace</td>
<td>~80%</td>
</tr>
<tr>
<td>Melamine</td>
<td>201.62 g</td>
</tr>
<tr>
<td>Paraformaldehyde</td>
<td>108.00 g</td>
</tr>
<tr>
<td>Cyanuric acid</td>
<td>15.48 g</td>
</tr>
<tr>
<td>Dimethyl Sulfoxide (DMSO)</td>
<td>2080 mL</td>
</tr>
<tr>
<td>BET surface area (m²/g)</td>
<td>500</td>
</tr>
</tbody>
</table>
The Importance of Formaldehyde Morphology

The initial 250 g syntheses had low BET surface areas and showed a high degree of inhomogeneity.

- Initial 250 g batch utilizing granular paraformaldehyde
- 250 g batch utilizing powdered paraformaldehyde

Granular form slows down dissolution, causing inhomogeneity in the polymer and reducing the overall surface area.
Comparison of BET Surface Area Through Scale-Up

BET Surface Area of PPN-151

Granular CH₂O

Powder CH₂O

BET Surface Area (m²/g)

15 g (avg of 5 runs)

5-d

7-d

9-d Top

250 g

9-d bottom

900

800

700

600

500

400

300

200

100

0
250 g Scale-up: Processing

• framergy’s Nutsche filter system utilized to wash sorbent (acetone, THF, DCM, methanol)
 • For 250 g batch wash with 4 L of each solvent
• Solvent Exchange (heat to 60°C in sealed Nutsche filtration device for 12 hr while agitating) twice with methanol
 • Additional 4 L
Reducing Solvent Washing: Improving Cost of Processing Steps

BET Surface Area of Washed PPN-151

- *Full Wash*
- Acetone
- THF
- DCM
- MeOH
- MeOH x1
- MeOH x2

Solvent Exchange
1 kg Scale-Up Reactor
1 kg Scale-up at Vapor Point

Reaction Set-up

PPN Removal
Parameters and Performance of 1 kg Batch

1 kg batch of PPN-151

Quantity Adsorbed (cm3/g STP) vs. Relative Pressure (P/P$_0$)

1 kg PPN-151-DETA Wet Gas Breakthrough Runs

CO$_2$ Uptake (wt%) vs. Cycle Number

Cycle Number: 1, 2, 3
100 mL column cycling

• Previous Lab scale wet gas testing performed using a 5 mL column
• Long-term cycling tests will be done with 100 mL column
• Multiple thermocouples will inform us on temperature gradients
• Manual testing resulted in non-uniformity of runs.
 • Tests will need to be repeated upon instrument repair
Remaining Tasks

• Final cycling tasks require the fabrication of 1.5 L adsorber:
 • 400 mm double walled column, adsorber stand, heat insulation, larger mass flow controller and upgrade kit for software integration

• Instrument Manufacturer, Quantachrome Instruments, was recently bought out by Anton Paar USA Inc. delaying fabrication

• DynaSorb BT has also been shipped back for upgrades and repairs
• PPN-151-DETA can achieve $> 0.1 \text{ g/g CO}_2$ loading at large scale
 • Parameters that have been ignored during lab scale testing can have a large impact on polymer porosity
• 1 kg synthesis performed in partnership with *framergergy* and Vapor Point
 • 1 kg batch shows $> 0.12 \text{ g/g CO}_2$
• Final cycling tests will be performed
 • 1.5 L adsorber column has been ordered from Anton Paar
Acknowledgement and Disclaimer

- Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0026472."

- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Acknowledgements

Publications

