

Dioxide Materials[™] The CO₂ Recycling Company[™]

CO₂ and Renewable Electricity into Chemicals: Formic Acid Production From Coal Flue Gas DE-FE0031706

Hongzhou Yang

Dioxide Materials Inc. Boca Raton FL 33431

© 2019 Dioxide Materials Proprietary

Project Overview

- Project Overview
 - Funding: \$800,000 DOE, \$200,000 OCO
 - Overall Project Performance Dates
 - 02/01/2019 to 01/31/2021
 - Project Participants:
 - Dioxide Materials: responsible for electrolyzer development
 - OCO: responsible for economic evaluation, testing at Talen Energy coal fired power plant
 - Talen Energy: Providing space/CO₂ for real tests
 - Overall Project Objectives
 - Understand how to run the electrolyzer for the conversion of CO₂ into formic acid using flue gas from a power plant as a source of CO₂.
 - Key questions
 - Can we run directly on the CO₂ produced by the power plant, or is separation needed?
 - What cleanup is needed?

Brief Technology Background

- Brief Technology Background
 - Data that supports premise of the project

FA concentration and Faradaic efficiency of formic acid electrolyzer operating at 600 mA constant current for over 400 hours

Lab scale formic acid electrolzyer

Technical Approach/Project Scope

- Experimental design and work plan
 - 3-electrode cell ("H" type cell) and Dioxide materials 5 cm² formic acid electrolyzer
 - Commercially available catalysts or synthesized catalysts
 - Gas products analyzed by gas chromatograph (GC), formic acid by titration
 - Short and long term run at constant current with different gas conditions using 5 cm² formic acid electrolyzer

Project schedule

- Obtain 100 mA/cm² of current feeding a mixture containing 50% CO₂ (Oct 1, 2019)
- Demonstrate 200 mA/cm² for 1000 hours feeding a mixture containing 50% CO₂ (Sept 1, 2020)
- Obtain 200 mA/cm² of formic acid current feeding a mixture containing 50% CO₂, 5% O₂ (Sept 1, 2020)
- Demonstrate 200 mA/cm² current for 100 hours feeding a mixture containing 50% CO₂. 10% O₂ 35 ppb SO₂ (Feb 15, 2021)
- Test on coal gas (Feb 15, 2021)

Key project success criteria

- Demonstrate a formic acid electrolyzer running on 14% CO₂ with total faradaic efficiency (FE-HCOOH+FE-CO+FE-H₂) greater than 50%. (Mar 1, 2020)
- Demonstrate a formic acid electrolyzer running for 1000 hours on 50% CO₂, with a cell voltage that never exceeds 4 V. (Nov 1, 2020)
- Demonstrate a formic acid electrolyzer running on 50% CO₂, 2% O₂ with total faradaic efficiency (FE-HCOOH+FE-CO+FE-H₂) greater than 50%. (July 1, 2020)
- Production of a formic acid stream with at least 5% formic acid from CO₂ produced by a coal fired power plant. (Feb 14, 2021)

