Development of Self-Assembly Isoporous Supports Enabling Transformational Membrane Performance for Cost Effective Carbon Capture (DE-FE0031596)

Hans Wijmans, Graham Kingston, Jenny He, Craig Paulaha, Steve White
Membrane Technology and Research, Inc.

Haiqing Lin
University of Buffalo

DOE NETL CO$_2$ Capture Technology Project Review Meeting
Pittsburgh, PA
August 16, 2018
Project Overview

- **Award Name:** Development of Self-Assembly Isoporous Supports Enabling Transformational Membrane Performance for Cost Effective Carbon Capture (DE-FE0031596)

- **Project Period:** June 1, 2018 – May 31, 2021

- **Funding:** $2,905,620 DOE; $726,805 cost share (MTR and University of Buffalo)

- **DOE Project Manager:** José Figueroa, Bruce Lani

- **Participants:** Membrane Technology and Research, Inc., University of Buffalo

- **Project Objectives:**
 - Develop supports for composite membranes with highly regular surface pore structures that eliminate the restriction on diffusion in the selective layer that is present with current generation supports
 - Develop improved selective materials with higher permeance and/or higher selectivity compared to the current generation Polaris material

- **Project Plan:**
 - **BP1:** Lab-scale support development, screening of novel selective materials
 - **BP2:** Commercial-scale support development, scale up of 5 selective materials, composite membrane optimization
 - **BP3:** Commercial-scale composite membrane development, lab-scale module testing at MTR, bench-scale module test at NCCC
Project Success Criteria

1. Composite membranes produced with transformational performance, based on improved supports and improved selective materials

2. Membrane and modules fabricated at MTR, and tested at MTR and at NCCC

3. Techno-economic analysis validates that the goal of $30/tonne CO₂ captured can be reached
The Issue: Reducing the Thickness of the Selective Layer Improves Permeance, but Less than Expected

CO₂ Permeability of PDMS is 3,300 Barrer

Influence of the support is significant for selective layers below 1 micron thickness
What the CDF results tell us:

- Currently used supports reduce membrane permeance by several factors if the selective layer is thinner than one micron.
- Higher porosities and smaller pore sizes reduce this effect (as expected).
- Uniform distribution of the pores is VERY beneficial in reducing the effect (this is a new observation).
Highly Ordered Surfaces can be Obtained by Combining Self-Assembly and Phase Inversion

Asymmetric superstructure formed in a block copolymer via phase separation

KLAUS-VIKTOR PEINEMANN, VOLKER ABETZ* AND PETER F. W. SIMON
Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht, Germany
*e-mail: volker.abetz@gkss.de

- Amphiphilic Block Copolymer in mixed solvent, evaporation step followed by immersion precipitation
- Creates top surface with highly ordered porous structure
- “Perfect” support for composite membranes
New Selective Materials (NYU Buffalo)

- Improved supports will allow fabrication of membranes with higher permeances (existing materials)

- Improved supports will make it possible to use less permeable selective materials with higher selectivity

- Ether-based polymer chemistries developed at University of Buffalo have high selectivities, even at high CO\textsubscript{2} partial pressures as well as at high temperatures

- Benefits:
 - Higher temperature operation in coal fired power plants
 - Reduced oxygen loss in sweep step
 - Higher pressure operation in gasification, steel and cement applications
Project Status

- Project started two months ago
- Purchased commercially available block copolymers
- Produced the first examples of block copolymer phase inversion at MTR
- University of Buffalo has started synthesis of the first ether-based selective materials
THANK YOU!

QUESTIONS?