Catalytic Removal of Oxygen and Pollutants in Exhaust Gases from Pressurized Oxy-Combustors

(DOE/NETL Agreement No. DE-FE0029161)

Hafiz Salih and Yongqi Lu

Illinois State Geological Survey University of Illinois at Urbana-Champaign

2018 NETL CO₂ Capture Technology Project Review Meeting Pittsburgh PA • August 14, 2018

Acknowledgements

Project Team Members:

University of Illinois (UIUC):

Seyed Dastgheib; Hong Lu; Ye Jiang; Abiodun Oki; Justin Mock;

Hong Yang; Andrew Kuhn

Washington University in St Louis (WUSTL):

Pratim Biswas; Sungyoon Jung

> AECOM:

Bill Steen

DOE/NETL Project Manager: Parrish Galusky, Mark Freeman

DOE/NETL Contract Specialist: Jodi Collins

Outline

□ **Project Overview**

- Technology Background
- Technical Approach/Project Scope
- Progress and current status of the Project
- □ Plans for Future Testing, Development or Commercialization

Main Objective

Develop and validate advanced catalytic materials and systems for purifying flue gas from pressurized oxycombustion (OC) to meet CO₂ purity specifications for EOR and improve performance over 1st-generation OC

Typical flue gas composition from OC boilers ^[1]

Component	Composition
O ₂	2.9 vol%
N ₂	0.6 vol%
Ar	3.3 vol%
CO ₂	63.0 vol%
H ₂ O	29.4 vol%
SO ₂	1,000-8,000 ppmv
NO _x	400 ppmv

Refs: 1) Internal simulation results; 2) DOE/NETL. Quality Guidelines for Energy System Studies: CO₂ Impurity Design Parameters, August 2013.

CO ₂ purity requirements							
for EOR ^[2]							
Component	Limit						
CO ₂	95 vol% (min)						
N ₂	1 vol%						
Ar	1 vol%						
H₂O	300 ppm wt						
O ₂	100 ppmv						
SO ₂	100 ppmv						
NO _x	100 ppmv						
CO	35 ppmv						
H ₂	1 vol%						
CH₄	1 vol%						
C_2H_6	1 vol%						
C ₃ +	<1 vol%						

Duration, Funding and Cost Share

Project duration:
10/1/16–12/31/19 (39 months)
Contract fully executed in January, 2017

 Funding Profile:
 DOE funding of \$1,498,323
 Cost share (in-kind) of \$381,492 (20.3%)

Project Overview

- Technology Background
- Technical Approach/Project Scope
- Progress and current status of the Project
- □ Plans for Future Testing, Development or Commercialization

Conceptual Scheme of Flue Gas Purification Process for Pressurized OC Systems

Units highlighted in blue color are focuses of this project:
 O₂ removal with a catalytic O₂ reduction unit
 NO/SO₂/Hg removal with a catalytic direct contact cooler (DCC) unit

Technical Gaps for OC Flue Gas Purification

O₂ removal: Known commercial catalysts or scavengers suitable only for trace amounts of O₂ (<~1,000 ppmv)</p>

NO removal: Mismatching reaction times between SO₂ and NO removal in a direct contact coolor (DCC) ~ten vs. hundreds of seconds for 90% removal

Hg removal: A DCC may capture only ~15% of total Hg; Potential Hg reemission issue in DCC water neutralization unit (similar to a wet scrubber)

Hg speciation: Emissions, fates & transformation of Hg and heavy metals not well known for pressurized OC systems

Advantages Compared with Other Technologies

Catalytic direct O_2 reduction by CH₄:

> Direct reduction of O_2 in a single reactor

 $CH_4 + 2O_2 = CO_2 + 2H_2O$ (Complete reaction favored)

- Avoid multiple steps (e.g., cryogenic distillation + adsorption)
- Reduces operating complexity and CAPEX & OPEX
- Heat recovery integrated into the power plant

Catalytic DCC for simultaneous NOx/SO₂/Hg removal:

NO(g) + $\frac{1}{2}O_2(g) = NO_2(g)$ (slow, K_e & k_r favored at low T & high P) NO₂(g) + SO₂(g) + H₂O(aq) = NO(g)+ H₂SO₄(aq) (fast) 2NO₂(g) + H₂O(aq) = HNO₂(aq) + HNO₃(aq) (slow) 3HNO₂(aq) = HNO₃(aq) + 2NO(g) + H₂O(aq) (slow)

(SO₂ removed in seconds, then bulk NO removed;

Complete NO/NO₂ removal (90%) in conventional DCC requires a higher P or longer time)

- A single device to replace 2 DCCs + 1 Hg adsorption bed
- Inexpensive carbon-based catalysts
- Hg reemission control in DCC water neutralization unit

- **Project Overview**
- Technology Background
- Technical Approach/Project Scope
- Progress and current status of the Project
- □ Plans for Future Testing, Development or Commercialization

Scope of Work

Project Schedule

ID	Task Name	Start	Finish	Resource Names				2017	,			201	8			20	19			2
					3 Q4	Q1	C	2 (23	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
1	Task 1.0 - Project Management and Planning	10/1/16	12/31/19	UIUC		JFN	MAI	MJJ	ASC	ND	J F M	AMJ			JFM	AMJ	JAS		JIFM	AM
2	1.1 - "Project Management & Planning" revision and updating	10/1/16	12/31/19	All																
3	1.2 - Project monitoring and control	10/1/16	12/31/19	All																
4	1.3 - Briefings, reports and conferences	10/1/16	12/31/19	All									╞							
5	a - Updated Project Management and Planning	1/31/17	1/31/17			l 🌢 1	1/31/	17					L							
6	b - Project kickoff meeting	3/31/17	3/31/17				♦ 3	3/31/17					L							
7	Task 2.0 - Catalytic Removal of Oxygen with Methane	2/1/17	3/31/19	UIUC		-				_	_		┢							
8	2.1 - Preparation & characterization of catalysts	2/1/17	12/31/18	WUSTL,UIUC										[í				
9	2.2 - Evaluation tests of catalysts for direct O2 removal	4/1/17	12/31/18	WUSTL,UIUC																
10	2.3 - Design & fabrication of a bench-scale fixed bed reactor system	12/1/17	5/31/18	UIUC									L							
11	2.4 - Testing of the bench-scale system with selected catalysts	6/1/18	3/31/19	UIUC								L 🎽								
12	c - A bench scale catalytic O2 removal reactor fabricated	5/31/18	5/31/18									\$ 5	/3 <mark>1/1</mark>	8						
13	d - 1-2 catalysts identified and optimal reactor operation conditions	3/31/19	3/31/19										L		•	3/31/	19			
	determined												L							
14	Task 3.0 - Enhanced Multi-Pollutant Control (NOx/SOx/Hg) in a Catalytic	2/1/17	3/31/19	UIUC		-		-	-		_		Δ		-					
	DCC																			
15	3.1 - Preparation & characterization of catalytic materials for enhanced NO	2/1/17	12/31/18	UIUC									┝							
	and Hg oxidation												L							
16	3.2 Development & characterization of sorbents/additives for Hg	1/1/18	12/31/18	UIUC																
													L							
17	3.3 - Design and fabrication of a bench scale catalytic DCC system	4/1/17	9/30/17	UIUC					_]											
18	3.4 - Parametric testing of catalytic packing materials in the bench scale DCC system	10/1/17	3/31/19	UIUC									1							
10	a A banch coole DCC system fabricated	0/20/17	0/20/17							9/30/	17		L							
20	e - A bench scale DCC system labitcated	12/21/10	9/30/17						T	5/50			L		12/3	1/18				
20	1 - 1 -2 additives/solbents for Hg re-emission control identified a - 1 -2 catalytic packing materials identified and entimal DCC exercising	2/21/10	2/21/10										L		12.5	3/31/	19			
21	conditions recommended	3/31/19	3/31/18										L							
22	Task 4.0 - Characterization of Hig & Gas Species in Flue Gas from the	3/1/10	7/31/10	AFCOM									L				-			
	WUSTL SPOC Pilot Facilities	5/1/15	1151115	ALCON									L		•		•			
23	4.1 - Preparation for field sampling and measurement	3/1/19	5/31/19	AFCOM									L							
24	4.2 - Field measurement at the WUSTL SPOC facilities	6/1/19	6/30/19	AFCOM WUSTI									L							
25	4.3 - Data analysis	7/1/19	7/31/19	AECOM.WUSTL									L				-			
26	h- Mercury and gas characterization results from field tests	7/31/19	7/31/19										L				♦ 7/3	31/19		
27	Task 5.0 - Slipstream Testing of Bench-Scale Catalytic O2 Removal and	4/1/19	6/30/19	WUSTL									L			_				
	DCC Systems at the WUSTL SPOC Pilot Facilities												L							
28	5.1 - Installation and tuning of bench scale systems	4/1/19	5/31/19	UIUC,WUSTL									L							
29	5.2 - Field testing with a slipstream flue gas from the SPOC pilot facilities	6/1/19	6/30/19	All																
	5 ···· - ··· - ··· - ··· - ··· · · · · ·																			
30	I - Slipstream testing with the flue gas from the SPOC pilot completed	6/30/19	6/30/19														6/30/	19		
31	Task 6.0 - High-Level Techno-Economic Analysis	7/1/19	12/31/19	AECOM												•	_	_	,	
32	6.1 - Preliminary process analysis	7/1/19	10/31/19	All														- 1		
33	6.2 - Preliminary cost analysis	11/1/19	12/31/19	All														1		
34	j - Preliminary process analysis and cost estimation completed	12/31/19	12/31/19																• 12/3	1/19

All milestones up to date have been accomplished

- **Project Overview**
- Technology Background
- Technical Approach/Project Scope
- Progress and current status of the Project
- Plans for Future Testing, Development or Commercialization

Task 2.0 Catalytic Removal of O₂ with CH₄: Synthesis of Metal Catalysts for O₂ Reduction

- Two synthesis routes to develop metal or bimetallic catalysts
- Wet synthesis: impregnation and sol-gel
- Gas-phase flame synthesis
- Two support materials
 Alumina
- Titania

Flame synthesis setup

Titanium Isopropoxide

Bubbler

Nebulizer

Precursor

Characterization and Evaluation of Metal Catalysts for O₂ Reduction

Ambient pressure fixed-bed reactor at WUSTL

Ambient pressure fixed-bed reactor

Ambient pressure fixed-bed reactor at UIUC

 High pressure fixedbed reactor at UIUC
 0.28-in ID and 19-in long reactor rated at 250 bar
 @ 1,000 °F

Baseline Catalysts Made with Flame Aerosol Technique: Pd Catalysts Supported on Titania

CH,

Baseline Catalysts Made with Wet Chemistry Technique: Pd or Pd Composite Metals Supported on Titania

Pd 3d_{3/2} Pd 3d_{5/2}

XPS multiplex spectra

Camanla			
Sample	Pû (%)	POUX	P00
		(%)	(%)
5%Pd/TiO ₂	45.86	27.49	26.64
3%Pd/TiO ₂	61.49	14.73	23.78
1%Pd/TiO ₂	29.14	28.98	41.89
5%Pd-5%Ce/TiO ₂	36.65	21.30	42.06

Sample	Ο _α (%)	O _β (%)	O _Y (%)
5%Pd/TiO ₂	19.59	44.81	35.60
3%Pd/TiO ₂	20.88	57.05	22.07
1%Pd/TiO ₂	26.02	53.18	20.80
5%Pd-5%Ce/TiO ₂	31.95	47.58	20.46

- ~90% O₂ reduction achieved with Pd catalysts
- Stoichiometric reaction with CH₄ and no CO (<3 ppm) detected

Metal Pd & adsorbed O_2 (O_{α}) played key roles

Baseline Catalysts Made with Wet Chemistry Technique: Pd or Pd Composite Metals Supported on Alumina

1% Pd/Al₂O₃ reduced 97% of O₂ in stoichiometric feed
 4% Pd/Al₂O₃ earlier light-off; 96% O₂ reduction in stoichiometric feed
 CO formation in excess CH₄ feed (O₂/CH₄ feed ratio <2)

Sequential Pd & Cu Catalysts to Reduce Pd Use and Enhance O₂ Removal and CO₂ Selectivity

Sequential Pd & Cu Catalysts to Reduce Pd Use and Enhance O₂ Removal and CO₂ Selectivity

Ambient pressure; Feed gas: 10% O_2 , 4.0-6.7% CH_4 , balance CO_2 . GHSV= 30,000 hr⁻¹

Pd+Cu had higher O₂ removal than Pd, despite a later light-off T

- Pd+Cu had better activity at near stoichiometry
- Pd+Cu attained both higher selectivity and O₂ removal than Pd

Non-Pd or Non-Precious Metal/Bimetalic Catalysts to Replace Pd and Reduce Material Costs

- Challenges of Pd-based catalysts:
 - High cost
 - Poor CO₂ selectivity in O₂-lean feeds
- Challenges of Cu-based catalysts:
 - ➤ Low O₂ reduction activity
 - Degradation due to O₂ adsorption
- Other non-previous catalysts:
 - \succ Low O₂ reduction activity
 - Requires high temperature

Preliminary tests for newly optimized non-previous composite catalysts showed O₂ reduction to <100 ppm without CO formation

Ambient pressure; Feed gas: 10% O_2 , 5% CH_4 and balance CO_2 . GHSV= 30,000 hr⁻¹.

Under 15 bar; Feed gas: $3\% O_2$, 1.5% CH₄ and balance CO₂. GHSV= 30,000 hr⁻¹.

Design and Fabrication of a Bench-Scale High Pressure Reverse Flow Fixed Bed (RFFB) Reactor System

RFFB system recently built for bench-scale testing of selected catalysts:

- RFFB reactor of 1" nominal diameter by 28" height
- Rated at 22.5 bar and 750 °C
- Design flow rate of 15 liter/min (STP)
- Gas flow direction alternates at a required time interval (e.g., 2 min)
- RFFB design to maintain the required temperature profile for low-concentration reducing gas by storing reaction heat for preheating feed gas

Catalytic Materials for Oxidation and Removal of NO and Hg

- □ 3 groups of carbon catalysts were developed:
 - Modified commercially available wood- and coal-based activated carbons (AC);
 - ACs prepared in house from PRB and IL coal;
 - Pyrolytic carbons and carbon nanotubes coated on packing materials
- Preparation or modification methods:
 - Aimed to enhance porosity, develop surface functionalities or catalytic sites, and increase surface hydrophobicity
 - Methods included nitrogen functionalization, Cu or Ce wet impregnation, hydrophobic treatment by silane and acetylene CVD
- >40 catalysts were prepared:
 >Surface area:10-1,677 m²/g;
 >Water contact angle (WCA) = 0-171°;
 - ➢ Porosity: 0.11-0.53 cm³/g (micro: 22-87%)

Photograph and SEM pictures of asreceived and carbon-coated stainless steel packings

Design and Fabrication of a Bench Scale Catalytic DCC System

- A bench-scale DCC system with replaceable column sizes for testing carbon catalysts (1-100 g) and treating 50-10,000 sccm flue gas
- Bench-scale testing has been initiated

Parametric Testing of Catalytic Packing Materials in the Bench-Scale DCC System

Initial catalysts screening was preformed using small-column at atmospheric pressure with feed gas containing 1,000 ppm NO in $\rm N_2$ and 4% $\rm O_2$

- Generally, coal-based ACs, nitrogen-functionalized, and hydrophobic samples exhibited higher NO conversions
- Higher NO conversion observed at lower temperatures
- Presence of moisture reduced NO conversion
- Catalyst flooding in water resulted in a negligible NO conversion

Parametric testing of catalytic packing materials in the bench scale DCC system

- Small column tests in wet trickle-bed mode performed at different pressures and gas residence times
- NO, SO₂, Hg⁰ effectively oxidized on carbon catalysts and removed by wash water
- Increasing pressure significantly enhanced NO oxidation and removal

Inlet15 bar, 25 °C,
gas residence
time \sim 7 secOutlet[NO] = 300 ppm[NO] < 1 ppm $[SO_2] = 3,000 \text{ ppm}$ $[NO_x] < 1 \text{ ppm}$ $[O_2] = 3 \%$ $[NO_x] \sim 1 \text{ ppm}$ Balance CO2 $[SO_2] < 1 \text{ ppm}$ Hg (100-1000 ppb) $[SO_2] < 1 \text{ ppm}$

The decision point for achieving >90% removal of NO, SO_2 , and Hg from a simulated pressurized flue gas in <10 s successfully passed

Development and Testing of Sorbents Or Additives to Control Hg Reemission from Cooling Water

Experimental method:

- Simulated wastewater contained H₂SO₄, HNO₃ and 0-100 ppb Hg²⁺
- NaOH solution or CaCO₃ slurry as base reagents for neutralization treatment
- Materials tested included Simpregnated ACs (F400-S, Nuchar-S) and the commercially available TMT

Preliminary results:

- Higher Hg reemission at higher T, indicating wastewater should be cooled prior to neutralization
- Higher Hg reemission with CaCO₃ slurry vs. NaOH solution
- Several ACs improved Hg reemission and others did not
- TMT is most effective additive so far

- **Project Overview**
- Technology Background
- Technical Approach/Project Scope
- Progress and current status of the Project
- □ Plans for Future Testing, Development or Commercialization

Plan for Future Work in This Project

Plan for Technology Scale-Up and Commercialization

- Tech development aimed to reach TRL 3 at the end of this project by
 - Validating the proof-of-concept of core technology including catalytic materials and reactor configurations with laboratory development and evaluation;
- Next project aimed to reach TRL 4-5:
 - Catalytic materials are produced at <u>1-5 kg</u> quantities
 - RFFB and DCC units are <u>integrated</u> and validated in a laboratory or a relevant environment
- Future efforts include engaging engineering groups, utilities, and manufacturers to mitigate engineering and scale-up risks

Comments and Questions?

Contact Info: Drs. Yongqi Lu / Hafiz Salih Illinois State Geological Survey University of Illinois at Urban-Champaign Email: <u>yongqilu@Illinois.edu</u>; <u>hsalih@illinois.edu</u> Tel: 217-244-4985