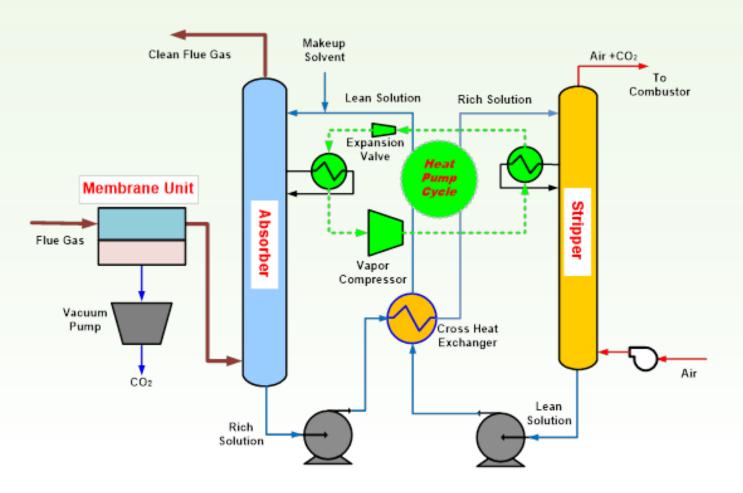
#### 2018 CAPTURE TECHNOLOGY MEETING

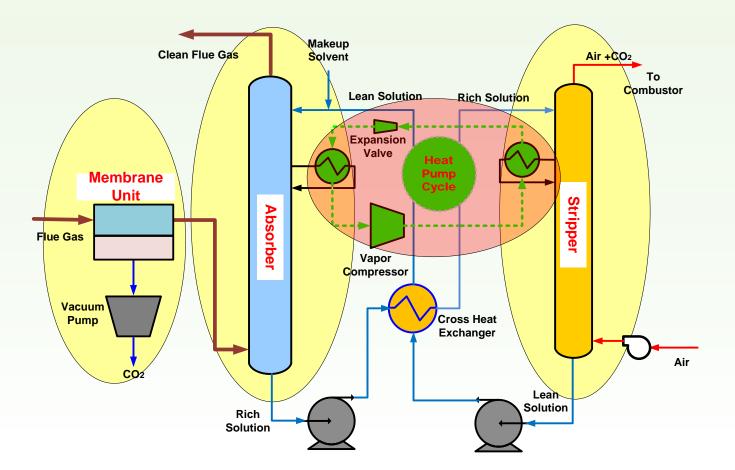
#### LAB-SCALE DEVELOPMENT OF A HYBRID CAPTURE SYSTEM WITH ADVANCED MEMBRANE, SOLVENT SYSTEM AND PROCESS INTEGRATION

DE-FE0026464


#### AUGUST 15, 2017








#### Membrane Integration



#### Membrane/Solvent Integrated Process

- Advantages
  - Tail-end technology which is easily used in retrofits
  - No steam extraction is required
  - Heat pump is seamlessly integrated into the cooling and heating of absorption/stripping process
  - Operating pressure of the stripper will be very flexible depending on the low quality heat
- Disadvantage
  - Capital cost could be intensive





#### CCS Team

CARBON CAPTURE SCIENTIFIC LLC Dr. Scott Chen and Dr. John Pan

- Experienced Chemical Engineer
- Strong Background in Separation Processes and Thermodynamics
- Founder of Carbon Capture Scientific, LLC

## **PSU** Team

#### Prof. Harry Allcock and Dr. Chen Chen



## d lon LIS Team

#### Prof. Hunaid Nulwala and Dr. Dave Luebke

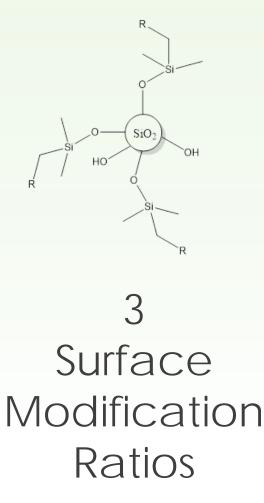
- Experienced Chemist with Experience in Industry, Government, and Academia
- 40+ Publications and 16+ Patents and Applications in Material Development



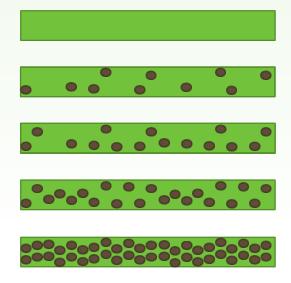
- Leading Investigator of Phosphazene Polymers (>630 Articles in the Area)
- Renowned Chemist with Experience in Industry, Government and Academia

## Project Outline

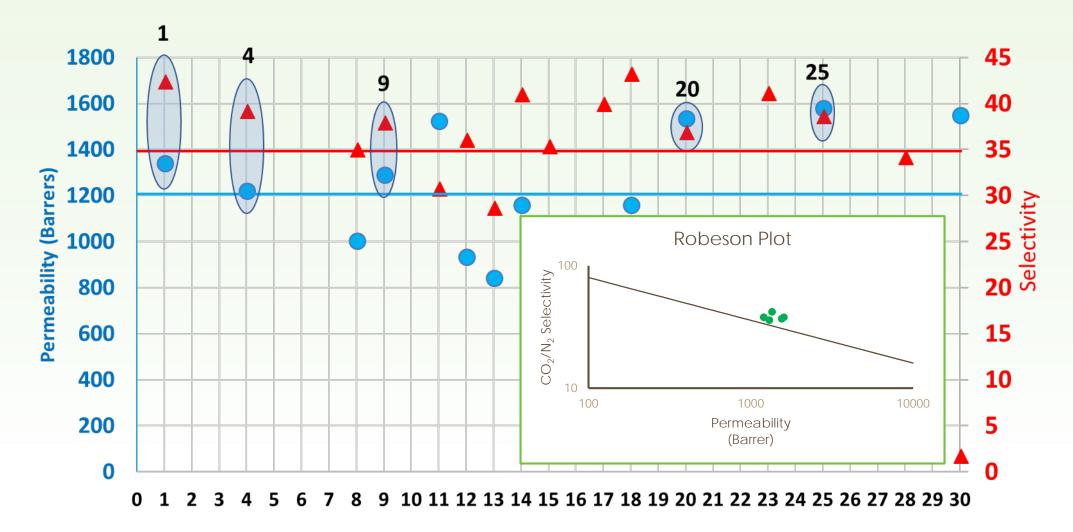
- Task 1: Project Management
- Task 2: Computer Simulation of Hybrid Process
- Task 3: Generation 0 ICE Membrane Development
- Task 4: Modification, Installation, and Testing of Absorption Column
- Task 5: Generation 1 ICE Membrane Development
- Task 6: Modification, Installation, and Testing of Air Stripper
- Task 7: Membrane Scale-up and Simulated Flue Gas Testing
- Task 8: Preliminary Techno-economic Analysis


#### Year 1 Year 2 Year 3

# Membrane Performance

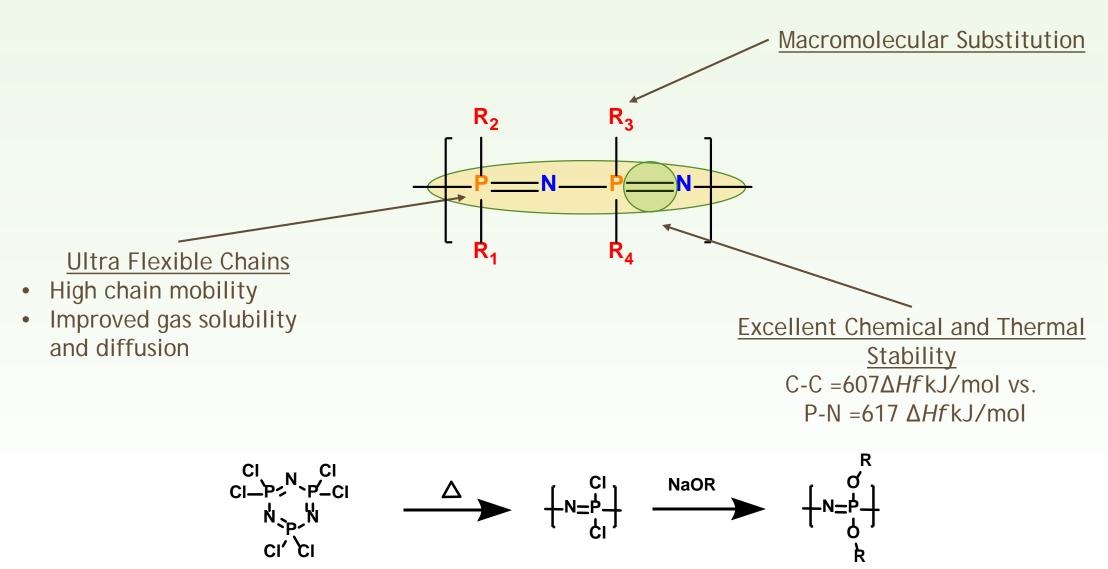

#### Mixed Matrix Membrane Optimization

23 Polymers <sub>R2</sub> <sub>R3</sub>

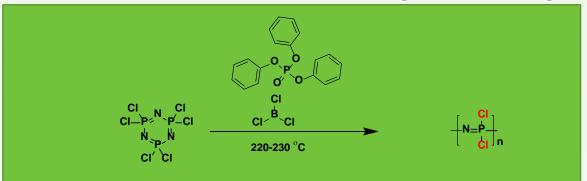




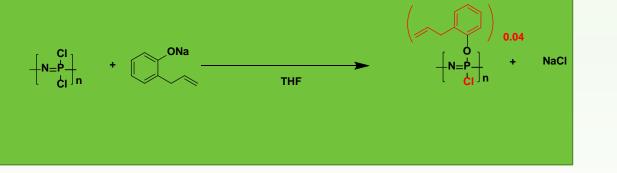

5 Particle Loadings



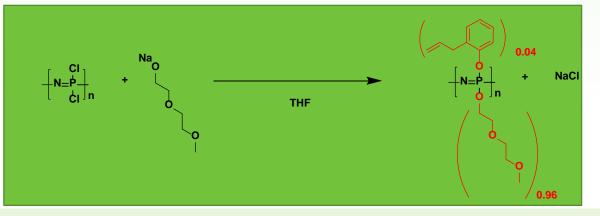

#### Design of Experiments Optimization




Polymer Scale-up


#### Polymer of Choice

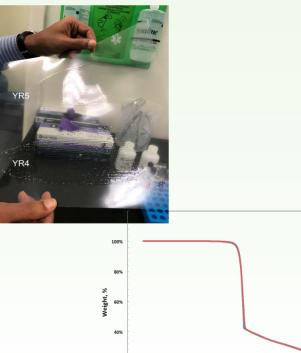



#### Polymer Synthesis



#### Ring Opening

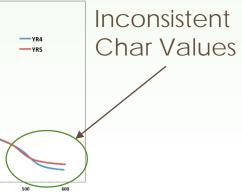



#### Post Modification Opening



#### Post Modification Opening

## **Polymer Purification**


- At smaller scale, dialysis works extremely well to remove NaCl and excess reactants from the polymer.
- Dialysis does not work on larger scales (>20g).
- Consistency of the polymer is a problem on larger scales when purified via dialysis.

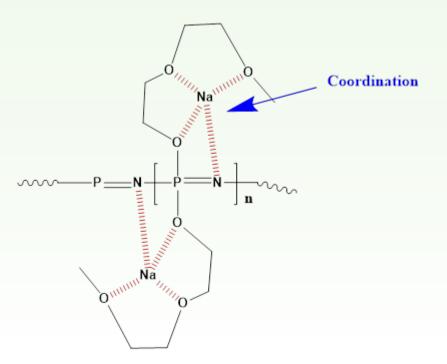


20%



**Color Variations** 



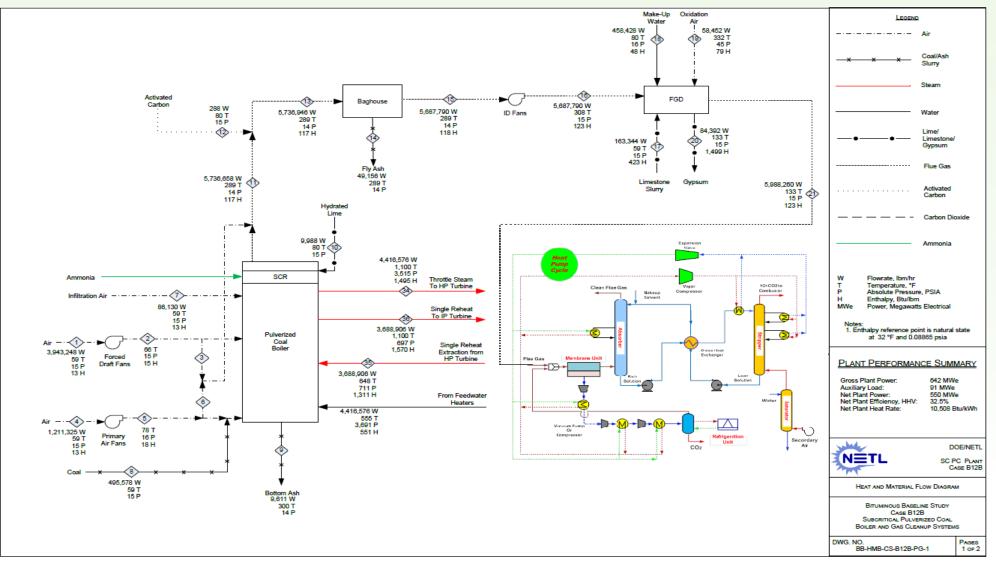

## Polymer Purification

#### 

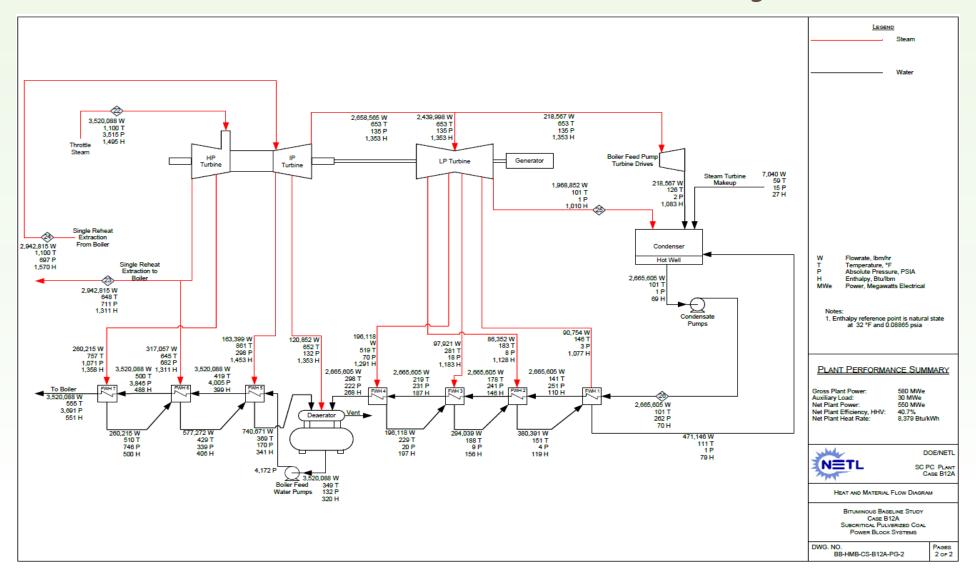
- New purification methodologies were developed using precipitation routes.
- Obtained consistent results on DSC and TGA
- Consistent color and viscosity
- Scale-up materials failed in performance testing

#### Sodium Metal Coordination

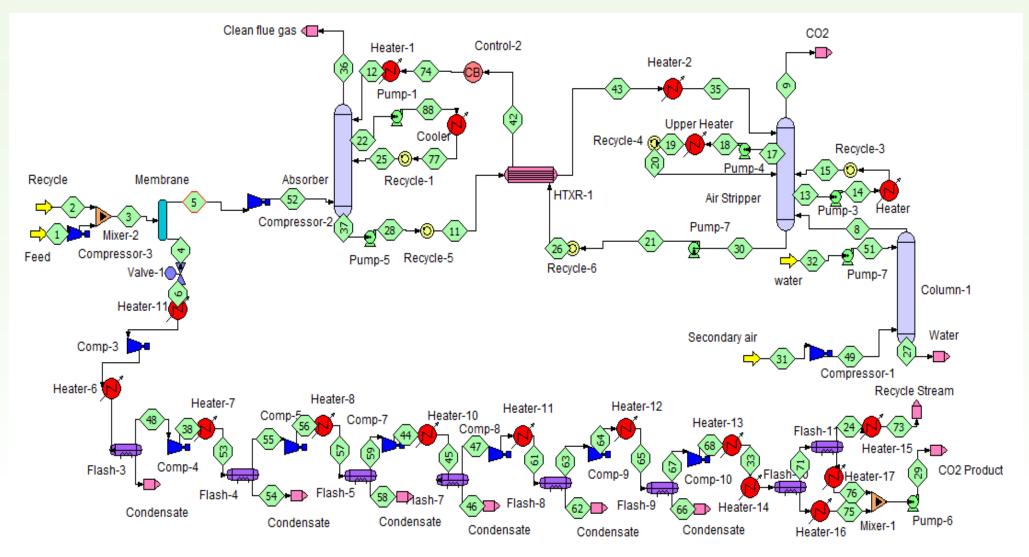
- Only small scale dialysis seems to give polymer with the desired properties
- Likely the polymeric sites are taken up by Na ions. This results in significant reduced performance.
- Dialysis is not an option for scaling up these materials.
- Likely, ammonium based cation is needed for the synthesis and scale-up.



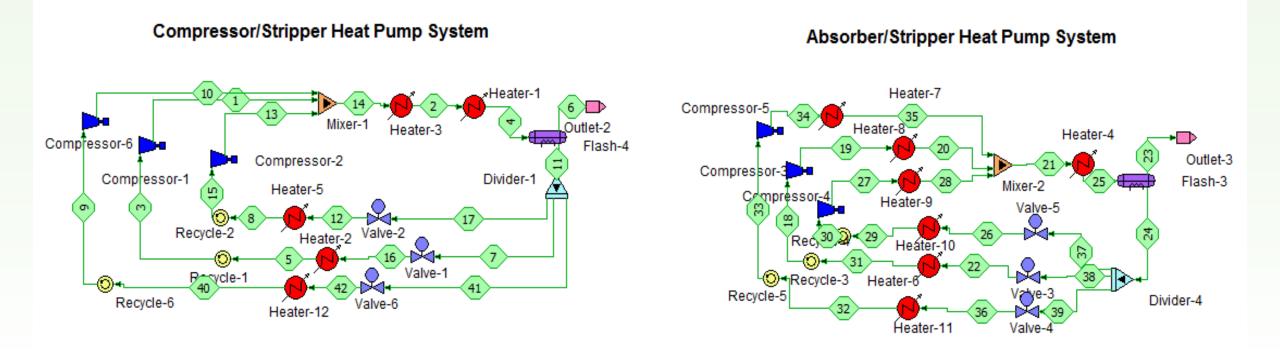

# Techno-Economic Analysis


## Reference Reports Used in the TEA Analysis

- 1. Techno-Economic Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3", DOE/NETL-2015/1723, July 6, 2015.
- 2. Analysis of GPS-based Technology for CO<sub>2</sub> Capture Topical Report by Nexant Inc. and Carbon Capture Scientific, LLC, 2015.
- 3. MTR CO2 CAPTURE PROCESS FOR A SUPERCRITICAL COAL-FIRED PLANT--Technical and Cost Evaluation, Final Report, by WorleyParsons Group, Inc.,2015.
- 4. Process Equipment Cost Estimation, Final Report, Loh, H. P., Lyons, Jennifer, White, Charles W., DOE/NETL-2002/1169, 2002.


#### Integration of Power Plant and the Hybrid Process




#### Power Island in the TEA Analysis



#### Energy and Mass Balance Calculations Process Flow



#### Process Flow Sheet for Heat Pump System Simulations



#### Capital Cost Estimation of Power Plant Equipped with Hybrid Process

| Case:                                     |                  | Hybrid Pr         | Hybrid Process – Supercritical PC w/ CO |           |            |              | Estimate Type:        |            |               | Conceptual  |                  |  |
|-------------------------------------------|------------------|-------------------|-----------------------------------------|-----------|------------|--------------|-----------------------|------------|---------------|-------------|------------------|--|
| Plant Size (MW,net):                      |                  | 550               |                                         |           |            | Cost Base:   |                       |            | Jun-11        |             |                  |  |
| I NI                                      |                  | Equipment<br>Cost | Material<br>Cost                        | Labor     |            | Bare Erected | Bare Erected Eng'g CM |            | Contingencies |             | Total Plant Cost |  |
| Item No.                                  | Description      |                   |                                         | Direct    | Indirect   | Cost         | H.O.& Fee             | Process    | Project       | \$/1,000    | \$/kW            |  |
| 1. Coal & Sorbent Handling                |                  | \$22,386          | \$5,714                                 | \$13,233  | \$0        | \$41,333     | \$4,133               | \$0        | \$6,820       | \$52,286    | \$92.38          |  |
| 2. Coal & Sorbent Prep & Feed             |                  | \$15,128          | \$837                                   | \$3,784   | \$0        | \$19,749     | \$1,975               | \$0        | \$3,259       | \$24,983    | \$44.14          |  |
| 3. Feed water & Miscellaneous BOP Systems |                  | \$59,843          | \$0                                     | \$27,798  | \$0        | \$87,641     | \$8,764               | \$0        | \$15,745      | \$112,150   | \$198.14         |  |
| 4. Boiler & Accessories                   |                  | \$211,004         | \$0                                     | \$120,229 | \$0        | \$331,234    | \$33,123              | \$0        | \$36,436      | \$400,793   | \$708.11         |  |
| 5A. Gas Cleanup & Piping                  |                  | \$118,843         | \$1,034                                 | \$43,325  | \$0        | \$163,202    | \$16,320              | \$0        | \$17,952      | \$197,475   | \$348.90         |  |
| 5B.1                                      | Solvent System   | \$72,549          | 100206                                  | 162076    | 0          | 334831       | 43855                 | 66966      | 86715         | 520288      | 919              |  |
| 5B.2                                      | Membrane System  | \$99,880          | 25534                                   | 66612     | 0          | 192025       | 18502                 | 7701       | 43646         | 261874      | 463              |  |
| 5B.3                                      | Heat Pump System | \$32,535          | 4880                                    | 10878     | 0          | 48294        | 4829                  | 0          | 10625         | 63748       | 113              |  |
| 5B. CO Removal & Compression              |                  | \$ 204,964        | \$130,620                               | \$239,566 | \$0        | \$575,150    | \$67,186              | \$74,667   | \$140,986     | \$845,910   | 1495             |  |
| 7. HRSG, Ducting, & Stack                 |                  | \$21,025          | \$1,088                                 | \$14,064  | \$0        | \$36,177     | \$3,618               | \$0        | \$5,232       | \$45,027    | \$79.55          |  |
| 8. Steam Turbine Generator                |                  | \$129,101         | \$1,463                                 | \$28,909  | <b>\$0</b> | \$159,471    | \$15,949              | <b>\$0</b> | \$20,373      | \$195,791   | \$346            |  |
| 9. Cooling Water System                   |                  | \$16,807          | \$8,861                                 | \$15,664  | <b>\$0</b> | \$41,332     | \$4,133               | <b>\$0</b> | \$6,183       | \$51,649    | \$91             |  |
| 10. Ash & Spent Sorbent Handling Systems  |                  | \$6,738           | \$199                                   | \$8,748   | \$0        | \$15,685     | \$1,569               | \$0        | \$1,774       | \$19,028    | \$34             |  |
| 11. Accessory Electric Plant              |                  | \$30,069          | \$12,477                                | \$33,082  | \$0        | \$75,628     | \$7,563               | \$0        | \$10,394      | \$93,584    | \$165            |  |
| 12. Instrumentation & Control             |                  | \$12,233          | \$0                                     | \$12,269  | \$0        | \$24,502     | \$2,450               | \$1,225    | \$3,477       | \$31,654    | \$56             |  |
| 13. Improvements to Site                  |                  | \$3,680           | \$2,115                                 | \$7,889   | \$0        | \$13,684     | \$1,368               | \$0        | \$3,010       | \$18,063    | \$32             |  |
| 14. Buildings & Structures                |                  | \$0               | \$29,016                                | \$27,530  | \$0        | \$56,547     | \$5,655               | \$0        | \$9,330       | \$71,531    | \$126            |  |
| Total                                     |                  | \$856,131         | \$133,187                               | \$505,263 | \$0        | \$1,494,582  | \$144,536             | \$63,345   | \$236,680     | \$2,159,924 | \$3,816          |  |

## Plant Performance Summary for Hybrid Process

| Item                                              | Case B12B         | Hybrid Process    |  |
|---------------------------------------------------|-------------------|-------------------|--|
| Total Gross Power, MWe                            | 642               | 728               |  |
| CO <sub>2</sub> Capture/Removal Auxiliaries, kWe  | 16,000            | 15,070            |  |
| Membrane Unit                                     | N/A               | 19,700            |  |
| Heat Pump Cycle                                   | N/A               | 15,340            |  |
| CO <sub>2</sub> Compression, kWe                  | 35,690            | 72,750            |  |
| Balance of Plant, kWe                             | 39,595            | 39,595            |  |
| Total Auxiliaries, MWe                            | 91                | 162               |  |
| Net Power, MWe                                    | 550               | 566               |  |
| HHV Net Plant Efficiency (%)                      | 32.5%             | 33.4%             |  |
| HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)         | 11,086 (10,508)   | 11388 (10795)     |  |
| LHV Net Plant Efficiency (%)                      | 33.7%             | 34.6%             |  |
| LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)         | 10,693 (10,135)   | 10985 (10411)     |  |
| HHV Boiler Efficiency, %                          | 89.1%             | 89.1%             |  |
| LHV Boiler Efficiency, %                          | 92.4%             | 92.4%             |  |
| Steam Turbine Cycle Efficiency, %                 | 54.5%             | 54.5%             |  |
| Steam Turbine Heat Rate, kJ/kWh (Btu/kWh)         | 6,608 (6,263)     | 6,608 (6,263)     |  |
| Condenser Duty, GJ/hr (MMBtu/hr)                  | 1,867 (1,770)     | 1,867 (1,770)     |  |
| As-Received Coal Feed, kg/hr (lb/hr)              | 224,791 (495,578) | 224,791 (495,578) |  |
| Limestone Sorbent Feed, kg/hr (lb/hr)             | 22,213 (48,970)   | 22,213 (48,970)   |  |
| HHV Thermal Input, kWt                            | 1,694,366         | 1,694,366         |  |
| LHV Thermal Input, kWt                            | 1,634,237         | 1,634,237         |  |
| Raw Water Withdrawal, (m3/min)/MWnet (gpm/MWnet)  | 0.054 (14.3)      | 0.054 (14.3)      |  |
| Raw Water Consumption, (m3/min)/MWnet (gpm/MWnet) | 0.042 (11.0)      | 0.042 (11.0)      |  |
| Excess Air, %                                     | 20.9%             | 20.9%             |  |

#### Power Summary of the Hybrid Process Equipped Power Plant

| Items                                            | Case B12B | Hybrid Process |  |
|--------------------------------------------------|-----------|----------------|--|
| Steam Turbine Power, MWe                         | 642       | 728            |  |
| Total Gross Power, MWe                           | 642       | 728            |  |
| Auxiliary Load Summary                           |           |                |  |
| Coal Handling and Conveying, kWe                 | 480       | 480            |  |
| Pulverizers, kWe                                 | 3,370     | 3,370          |  |
| Sorbent Handling & Reagent Preparation, kWe      | 1,070     | 1,070          |  |
| Ash Handling, kWe                                | 780       | 780            |  |
| Primary Air Fans, kWe                            | 1,670     | 1,670          |  |
| Forced Draft Fans, kWe                           | 2,130     | 2,130          |  |
| Induced Draft Fans, kWe                          | 8,350     | 8,350          |  |
| SCR, kWe                                         | 60        | 60             |  |
| Activated Carbon Injection, kWe                  | 27        | 27             |  |
| Dry sorbent Injection, kWe                       | 108       | 108            |  |
| Baghouse, kWe                                    | 110       | 110            |  |
| Wet FGD, kWe                                     | 3,550     | 3,550          |  |
| CO <sub>2</sub> Capture/Removal Auxiliaries, kWe | 16,000    | 15,070         |  |
| Membrane Unit                                    | N/A       | 19,700         |  |
| Heat Pump Cycle                                  | N/A       | 15,340         |  |
| CO <sub>2</sub> Compression, kWe                 | 35,690    | 72,750         |  |
| Miscellaneous Balance of Plant, kWe              | 2,000     | 2,000          |  |
| Steam Turbine Auxiliaries, kWe                   | 400       | 400            |  |
| Condensate Pumps, kWe                            | 640       | 640            |  |
| Circulating Water Pumps, kWe                     | 7,750     | 7,750          |  |
| Ground Water Pumps, kWe                          | 710       | 710            |  |
| Cooling Tower Fans, kWe                          | 4,010     | 4,010          |  |
| Transformer Losses, kWe                          | 2,380     | 2,380          |  |
| Total Auxiliaries, MWe                           | 91        | 162.0          |  |
| Net Power, MWe                                   | 550       | 566            |  |

#### COE Breakdown for Hybrid Process and Baseline Case B12B

|                       | Case          | B12B       | Hybrid Process |            |  |
|-----------------------|---------------|------------|----------------|------------|--|
| Component             | Value, \$/MWh | Percentage | Value, \$/MWh  | Percentage |  |
| Capital               | 72.2          | 51%        | 78.2           | 53%        |  |
| Fixed                 | 15.4          | 11%        | 15.0           | 10%        |  |
| Variable              | 14.7          | 10%        | 13.5           | 9%         |  |
| Fuel                  | 30.9          | 22%        | 30.0           | 21%        |  |
| Total (Excluding T&S) | 133.2         | N/A        | 136.7          | N/A        |  |
| CO <sub>2</sub> T&S   | 9.6           | 7%         | 9.6            | 7%         |  |
| Total (Including T&S) | 142.8         | N/A        | 146.3          | N/A        |  |

## Conclusions

- Trends in membrane performance were complex, but a limited optimization was possible.
- Scale-up in polymer synthesis proved challenging.
- Process efficiency gains were insufficient to offset increased capital equipment costs.

## Acknowledgement

Liquid Ion Solutions, Carbon Capture Scientific and Penn State University gratefully acknowledge the support of the United States Department of Energy's National Energy Technology Laboratory under agreement DE-FE0026464, which is responsible for funding the work presented.

# Questions?