UKy-CAER Heat-integrated Transformative CO₂ Capture Process in Pulverized Coal Power Plants

Heather Nikolic, Jesse Thompson and Kunlei Liu

University of Kentucky Center for Applied Energy Research Lexington, KY http://www.caer.uky.edu/powergen/home.shtml

NETL CO₂ Capture Technology Project Review Meeting

Executive Summary

Process oriented technology

- Applicable with any 2nd generation solvent
- All sub-technologies/ approaches have been proven
- Experienced team assembled
- Ongoing relationship with host site utility
- Firm financial commitment received from State of Kentucky (Executive Branch and Legislators), University senior management and utilities

	Technical Achievement	UKy-CAER History of Experimentally Demonstrated Success					
tion	CO ₂ Recycling	2012 Bench, 2015-2017 Small Pilot					
CO ₂ Recycling Discretized Packing Selection Pump Around		Common Industrial Distillation Practice, 2013 Modelling, 2017 Bench for CO ₂ Capture					
Inte	Pump Around	2009 Bench, 2015-2017 at Small Pilot					
	Solvent Recovery System	2015 at Bench, 2018 Small Pilot (planned)					
1	Advanced Solvent	2013-2017 Bench, 2015-2017 Small and Large Pilot					
v s	Two-stage Stripping	2010 Bench, 2015-2017 Small Pilot					
System Integration Heat Recovery	Pressurized Primary Stripper with Split Rich Solvent Feed	2008-2017 Bench, 2015-2017 Small Pilot, 2014 Modelling, 2015-2017 UTA Small Pilot					
R Inte	Exergy Loss Minimization	2015 Modelling					
	Smart Controls	2016-2017 at Small Pilot					
	Hybrid System	2014 Bench, 2018 Small Pilot (planned)					

Name	Role	Year Partnering with UKy
LG&E-KU	Host site	2005
KMPS	ISBL	2009
WP	OSBL	2011
CCSL	Solvent Supplier	2013
EPRI	TEA and 3 rd Verfication	2008
SMG	EIV	2010
HCERI	Engineering Aspect	2010
UT	Solvent & Emission Aspect	2008
Trimeric	Cost and Engineering Audit	2010

Project Overview Funding (DOE and Cost Share) and Project Performance Dates

Project Funding Profile							
Funding	Government Share	Cost Share	Total				
Total	\$941,997	\$235,553	\$1,177,550				
Cost share %	80.00%	20.00%	100%				

04/01/18 to 07/31/19

16 Months in Duration

One Budget Period

Phase II Application Due 3/31/2019

Project Overview Project Participants and Responsibility

August 13-17, 2018

Project Overview Overall Project Objectives

Advance the UKy-CAER post-combustion CO_2 capture technology, demonstrating an achievable COE with CCS of < \$30/tonne CO_2 captured when natural gas is used to provide CCS electricity and steam

Phase I Goals

1) Reinforce the cohesive project team including technology development; solvent development; EH&S; engineering design, fabrication, and construction management; technology commercialization and end-user utilities

2) Select and secure a host site and CCS location

3) Update H&M balances with most recent small-scale experimental data and chemical composition to complete and improve accuracy of an EIV and process design package, including the cost and schedule

4) Secure commitments from a process design firm, NEPA contractor, technology partners and vendors

- 5) Update Phases II and III preliminary costs and schedules
- 6) Secure commitments for Phases II and III cost share

August 13-17, 2018

Technology Background UKy-CAER CO₂ Capture Technology

NETL CO₂ Capture Technology Project Review Meeting

A Confirmed Heat Integrated PCCC Technology Robustness Advantage

Four solvent campaigns complete with the fifth underway

Steady state at 90% capture achievable within 2-3 hours after a cold startup Demonstration of amine concentration maintenance and water balance between liquid desiccant and amine loops

Typical operations include daily process start-up and shut down with

24-hour per day, 7-day per week operations demonstrated 89% trouble-free startups in 2016 during non-freezing weather 85% trouble-free startups in 2017 during non-freezing weather

NETL CO₂ Capture Technology Project Review Meeting

August 13-17, 2018

Versatile

Stable

Flexible

Technology Background Low Cost Advantage

The Uky-CAER CCS process with an advanced solvent can deliver:

- COE of \$119.07/MWh
- Cost of CO₂ captured at \$34.51/tonne, excluding TS&M

With a duel fuel system, UKy-CAER technology can deliver:

- COE of \$106.52/MWh
- Cost of CO₂ captured, excluding TS&M, of \$25.26/tonne CO₂

All at 90% coal flue gas capture rate and CO_2 compression to 2200 psia.

Technology Background Challenges We Will Address

Absorber Liquid/Gas Distribution and Redistribution

Absorber performance is significantly reduced with liquid/gas maldistribution.

Thermal Compression and L/R Exchanger Size

Benefits associated with thermal compression reducing the H₂O/CO₂ ratio at the stripper outlet, lowering the reboiler duty are not realized if the L/R exchanger is not properly sized.

Absorber Effectiveness and Column T Profile

With an ideal column temperature profile, the average CO_2 absorption rate can be increased significantly.

NETL CO₂ Capture Technology Project Review Meeting

August 13-17, 2018

Waste Quantity Minimization

NETL CO₂ Capture Technology Project Review Meeting

caer.uky.edu

Technical Approach/Project Scope Project Schedule

Task Name	Start	2018 Qtr 1	Qtr 2	Qtr 3	Qtr 4	20:	19 Qtr 1		Qtr 2	Qtr 3
1 Project Management and Planning	Sun 4/1/18		-							1
2 Host Site Agreement Amendment	Sun 4/1/18									
3 Aspen Plus®Model Simulation Creation and Update	Sun 4/1/18									
4 Project Schedule and Cost Estimate	Sun 4/1/18	1								
5 Environmental Information Volume	Sun 4/1/18							1		

NETL CO₂ Capture Technology Project Review Meeting

Technical Approach/Project Scope

Key Milestones

- 1. Multi-party NDA in Place
- 2. Host Site Agreement Amended
- 3. Completed EIV
- 4. Phase I Topical Report Complete

Project Success Criteria

- 1. A commercial scale CCS model integrated with the power generation unit model using the CCSL solvent with good agreement with the UKy-CAER 0.7 MWe small pilot experimental data.
- 2. An EIV identifying and estimating all potential waste stream emissions (gas, liquid, solid) from the 10 MWe large pilot facility and solvents, an assessment of the emissions properties for safety, handling, and toxicology, and an accidental release procedure for the large pilot facility.
- 3. Confirmation that schedule and cost will meet or exceed initial estimates.

Technical Approach/Project Scope Project Risks and Mitigation Strategies

Phase I Risk Assessment, Management Mitigation and Response Strategies.							
Description of Risk	Probability (Low, Moderate, High)	Impact (Low, Moderate, High)	Risk Management Mitigation and Response Strategies				
Phase I Management Risks							
Subcontract Agreement Delay	Moderate	Moderate	Dedicated UK staff will be identified.				
Subcontractor Financial Stability	Low	Moderate	Alternate subcontractors will be identified.				
Phase I Resource Risks							
Host Site Withdraws Support	Low	High	Several host sites have expressed interest in partnering with UKy-CAER for the large pilot project in addition to LG&E and KU. If necessary, UKy-CAER will continually seek new candidates.				
Solvent Supplier Withdraws Support	Low	High	The UKy-CAER CCS is flexible enough to use most advanced solvents. While the CCSL solvent is the prime solvent for the project, two alternative solvents with suppliers on the project team have been identified to mitigate risk to the project: the HCERI and the CAER solvents.				
Phase I Technical Risks							
Environmental Impact	Low	Moderate	An alternative solvent will be used or a system modifications will be made, depending on the environmental problem identified.				
Process Model does not Accurately Reflect Solvent Properties	Low	Moderate	The CCSL solvent has been successfully modeled with ProTreat [®] and this will be used as an alternate modeling software.				

Progress and Current Status of the Project

- ✓ Team Assembled
- ✓ TAB Membership Invitations Extended
- ✓ Multi-party NDA in Place
- ✓ Aspen Plus[®] Thermodynamic Model of the CCSL Solvent Complete
- ✓ Aspen Plus[®] Model of Process Complete
- ✓ ISBL Preliminary Design and Cost Estimate on Schedule to be Complete by 2/2019
- ✓ OSBL Preliminary Design and Cost Estimate on Schedule to be Complete by 2/2019
- ✓ EIV Preparation on Schedule to be Complete by 3/2019

Plans for Future Testing/Development/ Commercialization

NETL CO₂ Capture Technology Project Review Meeting

August 13-17, 2018

caer.uky.edu

Acknowledgements

U.S. DOE NETL: Bruce Lani and Lynn Brickett

LG&E and KU: David Link and Mahyar Ghorbanian CMRG: LG&E and KU, Duke Energy and EPRI CCSL: Prateek Bumb, Avinash Patkar, Will Shimer and Gopi Kiran EPRI: Abhojyit Bhown HCERI: Shiwang Gao and Edward Wu MTR: Tim Merkel and Ivy Huang UTA: Gary Rochelle