Sorption Enhanced Mixed Matrix Membranes for H₂ Purification and CO₂ Capture (DE-FE0026463)

Lingxiang Zhu¹, Deqiang Yin¹, Shailesh Konda¹, Hien Ngyuen¹, Mark Swihart¹, and **Haiqing Lin**¹, Jay Kniep² and Tim Merkel² Andrew Placido³ and Kunlei Liu³

¹University at Buffalo, State University of New York **(UB)** ²Membrane Technology and Research, Inc. **(MTR)** ³Center for Applied Energy Research, University of Kentucky **(CAER)**

NETL CO₂ Capture Technology Project Review Meeting

Pittsburgh, PA 8/14/2018

Sorption Enhanced Mixed Matrix Membranes for H₂ Purification and CO₂ Capture

Award number:	DE-FE0026463	
Project period:	10/1/15 to 12/31/18	
Funding:	\$1,485,099 DOE \$ 376,837 UB and MTR contribution \$1,861,936 total	
Program manager:	Steve Mascaro	
Participants:	University at Buffalo (UB); Membrane Technology and Research, Inc. (MTR); and University of Kentucky (CAER)	
Project Objectives:	Develop industrial membranes with H_2 permeance of 500 GPU and H_2/CO_2 selectivity of 30; and	
	Conduct parametric tests with real syngas at CAER.	

Project Scope

- **BP1:** Prepare mixed matrix materials with H_2 permeability of 50 Barrers and H_2/CO_2 selectivity of 30 **(Q1-Q4)**
- **BP2:** Prepare thin film composite membranes with H_2 permeance of 500 GPU and H_2/CO_2 selectivity of 30 (Q5-Q10)
- **BP3:** Conduct a 20-day field test of membranes with real syngas at CAER **(Q11-Q13)**

Field test

materials

3

Industrial membranes

Our Approach: H_2/CO_2 Solubility Selectivity

$$\alpha = \frac{P_{H_2}}{P_{CO_2}} = \frac{S_{H_2}}{S_{CO_2}} \times \frac{D_{H_2}}{D_{CO_2}}$$

Materials	Temp. (°C)	H ₂ solubility cm ³ (STP)/(cm ³ atm)	H ₂ /CO ₂ solubility selectivity
Poly(dimethyl siloxane)	35	0.10	0.078
Polysulfone	35	0.075	0.036
Matrimid [®]	35	0.12	0.035
Pd metal*	25	38,000	> 1,000

* Calculated at 0.02 bar H_2

Adams and Chen, Materials Today, 14 (2011) 282-289

Our Approach: Sorption Enhanced Mixed Matrix Materials

Membrane Materials Meeting the BP1 Target

Mixed-gas: 50% H₂/50% CO₂

Temperatures: 150-175-200-225 °C from left to right.

Zhu, Swihart and Lin, Energy Environ. Sci., 11 (1), 94-100 (2018)

Tasks (BP2)	Start date	End date		
Task 7 Scale up Polymer Synthesis	10/1/2016	3/31/2017		
Task 8. Scale up Synthesis of Pd-based Nanomaterials	10/1/2016	3/31/2017		
Task 9. Prepare Thin Film Composite Membranes	1/1/2017	9/30/2017		
Task 10. Conduct Parametric Tests of Membranes for H_2/CO_2 Separation	1/1/2017	12/31/2017		
Task 11. Design and Modify Membrane Stamp Test Unit for CAER Field Test	6/1/2017	12/31/2017		
Milestone f: Mixed matrix membranes with superior H_2/CO_2 separation properties prepared				
Task 13. Run 20-Day Field Test at CAER	6/1/2018	11/30/2018		
Task 14. Analyze Field Test Results / Membrane Post- analysis	10/1/2018	12/31/2018		
Milestone h: Successful field test completed		. .		
		48		

Polymer Development and Scale-up

- Commercial PBIs are identified
- Modification of PBIs has been demonstrated to improve performance

Zhu, Swihart and Lin, J. Mater. Chem. A, 5(37), 19914-23, 2017

Long-term Stability of a PBI- $(H_3PO_4)_{0.16}$ Film in Simulated Syngas (H₂, CO₂ and H₂O)

Zhu, Swihart and Lin, Energy Environ. Sci., 11 (1), 94-100 (2018)

9

Nanoparticle Synthesis Scale-up: Gas Phase Synthesis

Konda, Lin, Swihart, et al., Flame-based synthesis and in situ functionalization of palladium alloy nanoparticles, *AIChE J.*, in press

10

Stability of Mixed Matrix Materials against H_2S

PBI-Pd-58/13: 58 wt% or 13 vol% Pd nanoparticles

11

Thin Film Composite (TFC) Membranes

Conventional TFC membranes

Baker and Low, *Macromolecules*, 47 (2014) 6999-7013.

PBI/Pd selective layer

Thermally stable TFC membranes

Surface of PBI-supports: SEM Characterization

Aver. pore size: 14 nm Surface porosity: ~15%

Mag = 80.00 K X 200 nm Auriga-39-38

WD = 5.5 mmFIB Imaging = SEM

EHT = 4.00 kV

Signal A = InLens Date :7 Jul 2017 Noise Reduction = Line Avg

FIB Probe = 30KV:600pA

FIB Lock Mags = No Tilt Corrn. = Off

Cross-section of PBI-supports: SEM Characterization

500 nm

4	L		
			Junio Contraction

Mag = 15.00 K X 1 µm Auriga-39-38

WD = 6.1 mmFIB Imaging = SEM

EHT = 2.00 kV

Signal A = InLens Date :7 Jul 2017 Noise Reduction = Pixel Avg.

FIB Probe = 30KV:600pA

FIB Lock Mags = No Tilt Corrn. = Off

Reduce PBI/Pd Selective Layer Thickness to below 900 nm

PBI-Pd-58/13

H_2 permeance: ca. 40 GPU H_2/CO_2 selectivity: 40

Note: The PDMS gutter layer has an H_2 permeance of ~400 GPU

Measurement condition: 150 °C, 150 psig; 50% $H_2/50\%$ CO₂

Stability with H_2S for PBI-Pd-58/13-based TFC Membrane

PBI-Pd-58/13: 58 wt% or 13 vol% Pd nanoparticles 175 °C; 150 psig

Benchmarking Our TFC Membranes

Thin film (70 nm)
230 °C

17 Ali, Pacheco, Litwiller, Wang, Han, and Pinnau, *J. Mater. Chem. A* (2018) 6, 30-35

Gasifier at University of Kentucky Center for Applied Energy Research (CAER)

Syngas produced at atmospheric pressure, cooled to 40 °C, and then compressed to 450 psig

- Photos provided by Andy Placido of CAER
- 18

Membrane Testing Apparatus

Project Plan and Milestones

- (1) High performance mixed matrix materials identified;
- High performance thin film composite membranes prepared; Testing skid modified;
- (3) Parametric testing of membranes using real syngas

Project Milestones

Budget Period	ID	Description	(Planned) Completion Date
1	а	Updated Project Management Plan	11/30/15
1	b	Kickoff Meeting	12/31/15
3	С	Final report	12/31/18
1	d	Polymers and nanomaterials with promising H ₂ /CO ₂ separation properties identified and prepared	6/30/16
1	e	Mixed matrix materials with superior H ₂ /CO ₂ separation properties prepared	9/30/16
2	f	Mixed matrix membranes with superior H_2/CO_2 separation properties	3/31/18
2	g	Field test unit modified	3/31/18
3	h	Successful field test	11/30/18

Summary

Acknowledgments

Steve Mascaro Elaine Everitt

Department of Chemical and Biological Engineering

Tim Merkel Jay Kniep

Andrew Placido Kunlei Liu

