Development of Carbon Molecular Sieves Hollow Fiber Membranes based on Polybenzimidazole Doped with Polyprotic Acids with Superior H_2/CO_2 Separation Properties

<u>Haiging Lin¹</u>, Hien Nguyen¹, Rajinder Singh², and Andrew Sexton³ ¹University at Buffalo, State University of New York; ²Los Alamos National Laboratory; ³Trimeric Corporation

Project Objective

Objective: develop carbon molecular sieves (CMS) hollow fiber membranes with H_2 permeance of 1000 GPU and H_2/CO_2 selectivity of 40 at 200-300 °C.

BP 1 Materials development

- Optimize CMS materials with an H_2 permeability of 200 Barrers and H_2/CO_2 selectivity of 40 with simulated syngas; and
- Optimize the hollow fiber membranes based on PBI doped with polyprotic acids.

BP 2 Membrane development

Preliminary Data on PBI Doped by H_3PO_4

- Optimize membranes achieving the targeted H_2/CO_2 separation performance;
- Test membranes using simulated syngas containing H_2S , CO and water vapor;
- Determine the efficiency of the membrane reactors for the WGS reaction; and
- Conduct the techno-economic analysis.

Defining Membrane Properties for H_2/CO_2 Separation

- Hybrid membrane and cryogenic process is effective for CO_2 capture
- Target: H_2 permeance of 1000 GPU, H_2/CO_2

Zhu, Swihart and Lin, Energy Environ. Sci., 11

selectivity of 40

Memebrane H₂/CO₂ selectivity

60

Merkel, Zhou and Baker, J. Membr. Sci., 389, 442 (2012) Merkel, et al., NETL CO₂ Capture Technology Review Meeting, 2011.

Our Approach: Carbonizing PBI/Polyprotic Acids

Three steps:

1.PBI with superior H_2/CO_2 separation properties 2. Doping PBI with polyprotic acids to improve H_2/CO_2 selectivity

Thin film studies

- Carbonizing PBI increases H₂ permeance
- Carbonized PBI/H₃PO₄ shows superior H_2/CO_2 separation properties

Hollow fibers of PBI: Carbonizing PBI increases H₂ permeance

